These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36421109)

  • 1. Influence of Rigid-Elastic Artery Wall of Carotid and Coronary Stenosis on Hemodynamics.
    Albadawi M; Abuouf Y; Elsagheer S; Sekiguchi H; Ookawara S; Ahmed M
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intimal flap motion on flow in acute type B aortic dissection by using fluid-structure interaction.
    Chong MY; Gu B; Chan BT; Ong ZC; Xu XY; Lim E
    Int J Numer Method Biomed Eng; 2020 Dec; 36(12):e3399. PubMed ID: 32862487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the necessity of modelling fluid-structure interaction for stented coronary arteries.
    Chiastra C; Migliavacca F; Martínez MÁ; Malvè M
    J Mech Behav Biomed Mater; 2014 Jun; 34():217-30. PubMed ID: 24607760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of two-way fluid-structure interaction of blood flow in a patient-specific left coronary artery.
    Athani A; Ghazali NNN; Badruddin IA; Kamangar S; Anqi AE; Algahtani A
    Biomed Mater Eng; 2022; 33(1):13-30. PubMed ID: 34366314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue.
    Jodko D; Jeckowski M; Tyfa Z
    Int J Numer Method Biomed Eng; 2022 Aug; 38(8):e3630. PubMed ID: 35593678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models.
    Zhu Y; Mirsadraee S; Rosendahl U; Pepper J; Xu XY
    Front Physiol; 2022; 13():913457. PubMed ID: 35774287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls.
    Shahzad H; Wang X; Ghaffari A; Iqbal K; Hafeez MB; Krawczuk M; Wojnicz W
    Sci Rep; 2022 Jul; 12(1):12219. PubMed ID: 35851297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing mechanical vibration-altered wall shear stress in digital arteries.
    Noe L C; Settembre N
    J Biomech; 2022 Jan; 131():110893. PubMed ID: 34953283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling with fluid-structure interaction of the severe m1 stenosis before and after stenting.
    Park S; Lee SW; Lim OK; Min I; Nguyen M; Ko YB; Yoon K; Suh DC
    Neurointervention; 2013 Feb; 8(1):23-8. PubMed ID: 23515355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.