These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36421505)

  • 41. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulating the Entire Journey of Pesticide Application on Surfaces of Hydrophobic Leaves Modified by Pathogens at Different Growth Stages.
    He L; Xi S; Ding L; Li B; Mu W; Li P; Liu F
    ACS Nano; 2022 Jan; 16(1):1318-1331. PubMed ID: 34939419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces.
    Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances of bio-inspired anti-icing surfaces.
    Jiang S; Diao Y; Yang H
    Adv Colloid Interface Sci; 2022 Oct; 308():102756. PubMed ID: 36007284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drop-on-Drop Impact Dynamics on a Superhydrophobic Surface.
    Jaiswal AK; Khandekar S
    Langmuir; 2021 Nov; 37(43):12629-12642. PubMed ID: 34670364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bouncing droplets on nonsuperhydrophobic surfaces.
    Chen L; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016308. PubMed ID: 20866726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity.
    Singha SK; Das PK; Maiti B
    Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study of a new method for the instant preparation of ice particles in ice abrasive air jet.
    Li Z; Zhu Y; Liu Y; Cao C; Wu J; Huang F
    Sci Rep; 2022 Oct; 12(1):17497. PubMed ID: 36261461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-Icing Property of Superhydrophobic Nanostructured Brass via Deposition of Silica Nanoparticles and Nanolaser Treatment.
    Hussain S; Muangnapoh T; Traipattanakul B; Lekmuenwai M
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer.
    Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.