BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36421720)

  • 1. Phosphatidic Acid Accumulates at Areas of Curvature in Tubulated Lipid Bilayers and Liposomes.
    Bills BL; Knowles MK
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36421720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of vesicle composition and curvature on the dissociation of phosphatidic acid in small unilamellar vesicles--a 31P-NMR study.
    Swairjo MA; Seaton BA; Roberts MF
    Biochim Biophys Acta; 1994 May; 1191(2):354-61. PubMed ID: 8172921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?
    Kooijman EE; Carter KM; van Laar EG; Chupin V; Burger KN; de Kruijff B
    Biochemistry; 2005 Dec; 44(51):17007-15. PubMed ID: 16363814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the contributions of lipid shape and headgroup charge on bilayer behavior.
    Dickey A; Faller R
    Biophys J; 2008 Sep; 95(6):2636-46. PubMed ID: 18515396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R; Pownall HJ
    Biochim Biophys Acta; 1988 Feb; 938(2):155-66. PubMed ID: 3342229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion.
    Yang Q; Guo Y; Li L; Hui SW
    Biophys J; 1997 Jul; 73(1):277-82. PubMed ID: 9199792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.
    Kooijman EE; Chupin V; Fuller NL; Kozlov MM; de Kruijff B; Burger KN; Rand PR
    Biochemistry; 2005 Feb; 44(6):2097-102. PubMed ID: 15697235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidic acid in membrane rearrangements.
    Zhukovsky MA; Filograna A; Luini A; Corda D; Valente C
    FEBS Lett; 2019 Sep; 593(17):2428-2451. PubMed ID: 31365767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane heterogeneities and fusogenicity in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch.
    Bhagat M; Sofou S
    Langmuir; 2010 Feb; 26(3):1666-73. PubMed ID: 19813725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive lipid binding and activity validation of a cancer-specific peptide-peptoid hybrid PPS1.
    Desai TJ; Udugamasooriya DG
    Biochem Biophys Res Commun; 2017 Apr; 486(2):545-550. PubMed ID: 28322795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidic acid-phosphatidylethanolamine interaction and apocytochrome c translocation across model membranes.
    Miao Q; Han X; Yang F
    Biochem J; 2001 Mar; 354(Pt 3):681-8. PubMed ID: 11237873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer.
    Haque ME; McIntosh TJ; Lentz BR
    Biochemistry; 2001 Apr; 40(14):4340-8. PubMed ID: 11284690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers.
    Graham I; Gagné J; Silvius JR
    Biochemistry; 1985 Dec; 24(25):7123-31. PubMed ID: 4084567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers.
    Hung SC; Wang W; Chan SI; Chen HM
    Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers.
    Cannon B; Lewis A; Metze J; Thiagarajan V; Vaughn MW; Somerharju P; Virtanen J; Huang J; Cheng KH
    J Phys Chem B; 2006 Mar; 110(12):6339-50. PubMed ID: 16553452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine.
    Williams EE; Cooper JA; Stillwell W; Jenski LJ
    Mol Membr Biol; 2000; 17(3):157-64. PubMed ID: 11128974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of phospholipid headgroup composition on the transfer of fluorescent long-chain free fatty acids between membranes.
    Sunderland JE; Storch J
    Biochim Biophys Acta; 1993 Jul; 1168(3):307-14. PubMed ID: 8323971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex Behavior of Phosphatidylcholine-Phosphatidic Acid Bilayers and Monolayers: Effect of Acyl Chain Unsaturation.
    Kulig W; Korolainen H; Zatorska M; Kwolek U; Wydro P; Kepczynski M; Róg T
    Langmuir; 2019 Apr; 35(17):5944-5956. PubMed ID: 30942590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.
    Putta P; Rankenberg J; Korver RA; van Wijk R; Munnik T; Testerink C; Kooijman EE
    Biochim Biophys Acta; 2016 Nov; 1858(11):2709-2716. PubMed ID: 27480805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.