These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36421798)

  • 1. Mechanism of Stone (Hardened Endocarp) Formation in Fruits: An Attempt toward Pitless Fruits, and Its Advantages and Disadvantages.
    Khan MKU; Muhammad N; Jia Z; Peng J; Liu M
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence.
    Dardick CD; Callahan AM; Chiozzotto R; Schaffer RJ; Piagnani MC; Scorza R
    BMC Biol; 2010 Feb; 8():13. PubMed ID: 20144217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PbrMYB169 positively regulates lignification of stone cells in pear fruit.
    Xue C; Yao JL; Xue YS; Su GQ; Wang L; Lin LK; Allan AC; Zhang SL; Wu J
    J Exp Bot; 2019 Mar; 70(6):1801-1814. PubMed ID: 30715420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of JrLACs in the lignification of walnut endocarp.
    Li P; Wang H; Liu P; Li Y; Liu K; An X; Zhang Z; Zhao S
    BMC Plant Biol; 2021 Nov; 21(1):511. PubMed ID: 34732134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of peach endocarp and mesocarp during early fruit development.
    Hu H; Liu Y; Shi GL; Liu YP; Wu RJ; Yang AZ; Wang YM; Hua BG; Wang YN
    Physiol Plant; 2011 Aug; 142(4):390-406. PubMed ID: 21496031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit.
    Wang R; Xue Y; Fan J; Yao JL; Qin M; Lin T; Lian Q; Zhang M; Li X; Li J; Sun M; Song B; Zhang J; Zhao K; Chen X; Hu H; Fei Z; Xue C; Wu J
    Genome Biol; 2021 Nov; 22(1):313. PubMed ID: 34776004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome profiling and morphology provide insights into endocarp cleaving of apricot cultivar (Prunus armeniaca L.).
    Zhang X; Zhang L; Zhang Q; Xu J; Liu W; Dong W
    BMC Plant Biol; 2017 Apr; 17(1):72. PubMed ID: 28399812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript assembly and quantification by RNA-Seq reveals differentially expressed genes between soft-endocarp and hard-endocarp hawthorns.
    Dai H; Han G; Yan Y; Zhang F; Liu Z; Li X; Li W; Ma Y; Li H; Liu Y; Zhang Z
    PLoS One; 2013; 8(9):e72910. PubMed ID: 24039819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization and expression analysis of lignification in two pear (Pyrus ussuriensis Maxim.) varieties with contrasting stone cell content.
    Wang X; Liu S; Liu C; Liu Y; Lu X; Du G; Lyu D
    Protoplasma; 2020 Jan; 257(1):261-274. PubMed ID: 31482203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PbrmiR397a regulates lignification during stone cell development in pear fruit.
    Xue C; Yao JL; Qin MF; Zhang MY; Allan AC; Wang DF; Wu J
    Plant Biotechnol J; 2019 Jan; 17(1):103-117. PubMed ID: 29754465
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wang H; Feng X; Zhang Y; Wei D; Zhang Y; Jin Q; Cai Y
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and functional prediction of differentially expressed genes in walnut endocarp during hardening period based on deep neural network under agricultural internet of things.
    Guo Z; Yu S; Fu J; Ma K; Zhang R
    PLoS One; 2022; 17(2):e0263755. PubMed ID: 35202404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of Stone Fruits: Reciprocal Contribution Between Primary Metabolism and Cell Wall.
    Canton M; Drincovich MF; Lara MV; Vizzotto G; Walker RP; Famiani F; Bonghi C
    Front Plant Sci; 2020; 11():1054. PubMed ID: 32733527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies.
    Dardick C; Callahan AM
    Front Plant Sci; 2014; 5():284. PubMed ID: 25009543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-omics analyses reveal stone cell distribution pattern in pear fruit.
    Gong X; Qi K; Chen J; Zhao L; Xie Z; Yan X; Khanizadeh S; Zhang S; Tao S
    Plant J; 2023 Feb; 113(3):626-642. PubMed ID: 36546867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit.
    Xu J; Tao X; Xie Z; Gong X; Qi K; Zhang S; Shiratake K; Tao S
    Sci Rep; 2021 May; 11(1):9450. PubMed ID: 33941813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochrome-mediated blue-light signal contributes to lignin biosynthesis in stone cells in pear fruit.
    Wang Q; Gong X; Xie Z; Qi K; Yuan K; Jiao Y; Pan Q; Zhang S; Shiratake K; Tao S
    Plant Sci; 2022 May; 318():111211. PubMed ID: 35351300
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Gong X; Xie Z; Qi K; Zhao L; Yuan Y; Xu J; Rui W; Shiratake K; Bao J; Khanizadeh S; Zhang S; Tao S
    Hortic Res; 2020; 7():59. PubMed ID: 32377350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
    Tani E; Tsaballa A; Stedel C; Kalloniati C; Papaefthimiou D; Polidoros A; Darzentas N; Ganopoulos I; Flemetakis E; Katinakis P; Tsaftaris A
    Plant Physiol Biochem; 2011 Jun; 49(6):654-63. PubMed ID: 21324706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical structure of Camellia oleifera shell.
    Hu J; Shi Y; Liu Y; Chang S
    Protoplasma; 2018 Nov; 255(6):1777-1784. PubMed ID: 29868989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.