BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 36421904)

  • 1. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering.
    Chiappalone M; Cota VR; Carè M; Di Florio M; Beaubois R; Buccelli S; Barban F; Brofiga M; Averna A; Bonacini F; Guggenmos DJ; Bornat Y; Massobrio P; Bonifazi P; Levi T
    Brain Sci; 2022 Nov; 12(11):. PubMed ID: 36421904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks.
    Buccelli S; Bornat Y; Colombi I; Ambroise M; Martines L; Pasquale V; Bisio M; Tessadori J; Nowak P; Grassia F; Averna A; Tedesco M; Bonifazi P; Difato F; Massobrio P; Levi T; Chiappalone M
    iScience; 2019 Sep; 19():402-414. PubMed ID: 31421595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends and Challenges in Neuroengineering: Toward "Intelligent" Neuroprostheses through Brain-"Brain Inspired Systems" Communication.
    Vassanelli S; Mahmud M
    Front Neurosci; 2016; 10():438. PubMed ID: 27721741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report.
    Moritz CT; Ruther P; Goering S; Stett A; Ball T; Burgard W; Chudler EH; Rao RP
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1354-67. PubMed ID: 27008657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis.
    Grahn PJ; Mallory GW; Berry BM; Hachmann JT; Lobel DA; Lujan JL
    Front Neurosci; 2014; 8():296. PubMed ID: 25278830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic hardware for somatosensory neuroprostheses.
    Donati E; Valle G
    Nat Commun; 2024 Jan; 15(1):556. PubMed ID: 38228580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticospinal neuroprostheses to restore locomotion after spinal cord injury.
    Borton D; Bonizzato M; Beauparlant J; DiGiovanna J; Moraud EM; Wenger N; Musienko P; Minev IR; Lacour SP; Millán Jdel R; Micera S; Courtine G
    Neurosci Res; 2014 Jan; 78():21-9. PubMed ID: 24135130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time interaction between a neuromorphic electronic circuit and the spinal cord.
    Jung R; Brauer EJ; Abbas JJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):319-26. PubMed ID: 11561669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity and Adaptation in Neuromorphic Biohybrid Systems.
    George R; Chiappalone M; Giugliano M; Levi T; Vassanelli S; Partzsch J; Mayr C
    iScience; 2020 Oct; 23(10):101589. PubMed ID: 33083749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfaces with the peripheral nerve for the control of neuroprostheses.
    del Valle J; Navarro X
    Int Rev Neurobiol; 2013; 109():63-83. PubMed ID: 24093606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Materials for Neuromorphic Devices and Systems.
    Kim MK; Park Y; Kim IJ; Lee JS
    iScience; 2020 Dec; 23(12):101846. PubMed ID: 33319174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware.
    Behrenbeck J; Tayeb Z; Bhiri C; Richter C; Rhodes O; Kasabov N; Espinosa-Ramos JI; Furber S; Cheng G; Conradt J
    J Neural Eng; 2019 Apr; 16(2):026014. PubMed ID: 30577030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.
    Pani D; Meloni P; Tuveri G; Palumbo F; Massobrio P; Raffo L
    Front Neurosci; 2017; 11():90. PubMed ID: 28293163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic applications in medicine.
    Aboumerhi K; Güemes A; Liu H; Tenore F; Etienne-Cummings R
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-Loop Neural Prostheses With On-Chip Intelligence: A Review and a Low-Latency Machine Learning Model for Brain State Detection.
    Zhu B; Shin U; Shoaran M
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):877-897. PubMed ID: 34529573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.