These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 36421904)

  • 21. A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks.
    Keren H; Partzsch J; Marom S; Mayr CG
    Front Neurosci; 2019; 13():432. PubMed ID: 31133779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.
    Greenwald E; Masters MR; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):1-17. PubMed ID: 26753776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The present and future of neural interfaces.
    Valeriani D; Santoro F; Ienca M
    Front Neurorobot; 2022; 16():953968. PubMed ID: 36304780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroprostheses for increasing disabled patients' mobility and control.
    MikoĊ‚ajewska E; MikoĊ‚ajewski D
    Adv Clin Exp Med; 2012; 21(2):263-72. PubMed ID: 23214292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.
    Rothschild RM
    Front Neuroeng; 2010; 3():112. PubMed ID: 21060801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systems Neuroengineering: Understanding and Interacting with the Brain.
    Edelman BJ; Johnson N; Sohrabpour A; Tong S; Thakor N; He B
    Engineering (Beijing); 2015 Sep; 1(3):292-308. PubMed ID: 34336364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Future developments in brain-machine interface research.
    Lebedev MA; Tate AJ; Hanson TL; Li Z; O'Doherty JE; Winans JA; Ifft PJ; Zhuang KZ; Fitzsimmons NA; Schwarz DA; Fuller AM; An JH; Nicolelis MA
    Clinics (Sao Paulo); 2011; 66 Suppl 1(Suppl 1):25-32. PubMed ID: 21779720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closed-Loop Neuromorphic Benchmarks.
    Stewart TC; DeWolf T; Kleinhans A; Eliasmith C
    Front Neurosci; 2015; 9():464. PubMed ID: 26696820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses.
    Shokur S; Mazzoni A; Schiavone G; Weber DJ; Micera S
    Med; 2021 Aug; 2(8):912-937. PubMed ID: 35590168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy.
    Yoo S; Kim M; Choi C; Kim DH; Cha GD
    Adv Healthc Mater; 2023 Dec; ():e2303563. PubMed ID: 38117136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Approaching the mapping limit with closed-loop mapping strategy for deploying neural networks on neuromorphic hardware.
    Wang S; Yu Q; Xie T; Ma C; Pei J
    Front Neurosci; 2023; 17():1168864. PubMed ID: 37274210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Connecting neurons to a mobile robot: an in vitro bidirectional neural interface.
    Novellino A; D'Angelo P; Cozzi L; Chiappalone M; Sanguineti V; Martinoia S
    Comput Intell Neurosci; 2007; 2007():12725. PubMed ID: 18350128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.
    Orsborn AL; Moorman HG; Overduin SA; Shanechi MM; Dimitrov DF; Carmena JM
    Neuron; 2014 Jun; 82(6):1380-93. PubMed ID: 24945777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses.
    Bonifazi P; Difato F; Massobrio P; Breschi GL; Pasquale V; Levi T; Goldin M; Bornat Y; Tedesco M; Bisio M; Kanner S; Galron R; Tessadori J; Taverna S; Chiappalone M
    Front Neural Circuits; 2013; 7():40. PubMed ID: 23503997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
    Stefanini F; Neftci EO; Sheik S; Indiveri G
    Front Neuroinform; 2014; 8():73. PubMed ID: 25232314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications.
    Romeira B; Figueiredo JML; Javaloyes J
    Chaos; 2017 Nov; 27(11):114323. PubMed ID: 29195310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CerebelluMorphic: Large-Scale Neuromorphic Model and Architecture for Supervised Motor Learning.
    Yang S; Wang J; Zhang N; Deng B; Pang Y; Azghadi MR
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4398-4412. PubMed ID: 33621181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications.
    Bisio M; Pimashkin A; Buccelli S; Tessadori J; Semprini M; Levi T; Colombi I; Gladkov A; Mukhina I; Averna A; Kazantsev V; Pasquale V; Chiappalone M
    Adv Neurobiol; 2019; 22():351-387. PubMed ID: 31073944
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.