These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36421980)

  • 1. Machine learning enabled quantification of the hydrogen bonds inside the polyelectrolyte brush layer probed using all-atom molecular dynamics simulations.
    Pial TH; Das S
    Soft Matter; 2022 Dec; 18(47):8945-8951. PubMed ID: 36421980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.
    Pial TH; Das S
    J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes.
    Ishraaq R; Das S
    Chem Commun (Camb); 2024 Jun; 60(48):6093-6129. PubMed ID: 38819435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-atom molecular dynamics simulations of weak polyionic brushes: influence of charge density on the properties of polyelectrolyte chains, brush-supported counterions, and water molecules.
    Sachar HS; Pial TH; Chava BS; Das S
    Soft Matter; 2020 Aug; 16(33):7808-7822. PubMed ID: 32747883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.
    Pial TH; Sachar HS; Desai PR; Das S
    ACS Nano; 2021 Apr; 15(4):6507-6516. PubMed ID: 33797221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic and Apolar Hydration in Densely Grafted Cationic Brushes and Counterions with Large Mobilities.
    Ishraaq R; Akash TS; Bera A; Das S
    J Phys Chem B; 2024 Jan; 128(1):381-392. PubMed ID: 38148252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.
    Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A
    Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength, number, and kinetics of hydrogen bonds for water confined inside boron nitride nanotubes.
    Chava BS; Das S
    Nanoscale Adv; 2024 Jun; 6(13):3329-3337. PubMed ID: 38933867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical self-consistent field theory study of the response of strong polyelectrolyte brushes to external electric fields.
    Tong C
    J Chem Phys; 2015 Aug; 143(5):054903. PubMed ID: 26254666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory and molecular dynamics simulations.
    Desai PR; Sinha S; Das S
    Phys Rev E; 2018 Mar; 97(3-1):032503. PubMed ID: 29776032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Structures Generated by Spherical Polyelectrolyte Brushes and their Application in Catalysis.
    Lu Y; Wittemann A; Ballauff M
    Macromol Rapid Commun; 2009 May; 30(9-10):806-15. PubMed ID: 21706663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Counterion Valence on Conformational Behavior of Spherical Polyelectrolyte Brushes Confined between Two Parallel Walls.
    Li L; Cao Q; Zuo C
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling and shrinking of two opposing polyelectrolyte brushes.
    Duan M; Chen G
    Phys Rev E; 2023 Feb; 107(2-1):024502. PubMed ID: 36932574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of 3-arm polyelectrolyte star brushes under external electric fields.
    Zhang F; Wang S; Ding H; Tong C
    Soft Matter; 2019 Mar; 15(12):2560-2570. PubMed ID: 30698599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation.
    Li Y; Yang Z; Hu N; Zhou R; Chen X
    J Chem Phys; 2013 May; 138(18):184703. PubMed ID: 23676060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.