These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36422131)

  • 1. Effect of Packing Nonuniformity at the Fiber Bundle-Case Interface on Performance of Hollow Fiber Membrane Gas Separation Modules.
    Sun L; Panagakos G; Lipscomb G
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of hollow fiber modules for uniform shear elution affinity cell separation.
    Nordon RE; Schindhelm K
    Artif Organs; 1997 Feb; 21(2):107-15. PubMed ID: 9028492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Artificial Lung Fiber Bundle Geometric Design on Micro- and Macro-scale Clot Formation.
    Lai A; Omori N; Napolitano JE; Antaki JF; Cook KE
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fouling and its reversibility in relation to flow properties and module design in aerated hollow fibre modules for membrane bioreactors.
    Pollet S; Guigui C; Cabassud C
    Water Sci Technol; 2008; 57(4):629-36. PubMed ID: 18360006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of individual fibers in a submerged hollow fiber bundle.
    Yeo A; Fane AG
    Water Sci Technol; 2005; 51(6-7):165-72. PubMed ID: 16003975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.
    Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous ultrafiltration and affinity sorptive separation of proteins in a hollow fiber membrane module.
    Molinari R; Torres JL; Michaels AS; Kilpatrick PK; Carbonell RG
    Biotechnol Bioeng; 1990 Sep; 36(6):572-80. PubMed ID: 18595115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of a Mathematical Model to Predict CO
    Omecinski KS; Federspiel WJ
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-scale Modeling of Flow and Oxygen Transfer in Hollow Fiber Membrane Bundle.
    Taskin ME; Fraser KH; Zhang T; Griffith BP; Wu ZJ
    J Memb Sci; 2010 Oct; 362(1-2):172-183. PubMed ID: 20802783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Simulation of Mass Transfer in Hollow Fiber Membrane Module for Membrane-Based Artificial Organs.
    Wang Z; Xu S; Yu Y; Zhang W; Zhang X
    Membranes (Basel); 2024 Mar; 14(3):. PubMed ID: 38535286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction.
    Liang C; Chen J; Li N; Dong Y; Zhong T; Zeng S; Dong C
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Analysis of the Effects of Fiber Deformation on the Microstructure and Permeability of Blood Oxygenator Bundles.
    Poletti G; Ninarello D; Pennati G
    Ann Biomed Eng; 2024 Apr; 52(4):1091-1105. PubMed ID: 38349442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices.
    Pacella HE; Eash HJ; Federspiel WJ
    J Memb Sci; 2011 Oct; 382(1-2):238-242. PubMed ID: 22927706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
    Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U
    Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the Performance of CO
    Ho CD; Chang H; Chen YH; Chew TL; Ke JW
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of a flow optimized oxygenator with integrated pulsatile pump.
    Borchardt R; Schlanstein P; Arens J; Graefe R; Schreiber F; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Nov; 34(11):904-10. PubMed ID: 21092033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a silicone hollow fiber membrane oxygenator for ECMO application.
    Yamane S; Ohashi Y; Sueoka A; Sato K; Kuwana J; Nosé Y
    ASAIO J; 1998; 44(5):M384-7. PubMed ID: 9804456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Experimental Study of Membrane Contactor Modules for Recovering Cyanide through a Gas Membrane Process.
    Quilaqueo M; Seriche G; Valetto S; Barros L; Díaz-Quezada S; Ruby-Figueroa R; Troncoso E; Estay H
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32438646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-Film Composite Matrimid-Based Hollow Fiber Membranes for Oxygen/Nitrogen Separation by Gas Permeation.
    González-Revuelta D; Fallanza M; Ortiz A; Gorri D
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.