These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36422134)

  • 1. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics.
    Foo ZH; Thomas JB; Heath SM; Garcia JA; Lienhard JH
    Environ Sci Technol; 2023 Oct; 57(39):14747-14759. PubMed ID: 37721998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application and Analysis of Bipolar Membrane Electrodialysis for LiOH Production at High Electrolyte Concentrations: Current Scope and Challenges.
    González A; Grágeda M; Quispe A; Ushak S; Sistat P; Cretin M
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Validation of a LiOH Production Process by Bipolar Membrane Electrodialysis from Concentrated LiCl.
    González A; Grágeda M; Ushak S
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Electrodialysis Desalination Performance of Novel Bioinspired and Conventional Ion Exchange Membranes with Sodium Chloride Feed Solutions.
    Hyder AG; Morales BA; Cappelle MA; Percival SJ; Small LJ; Spoerke ED; Rempe SB; Walker WS
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33808723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing.
    Flexer V; Baspineiro CF; Galli CI
    Sci Total Environ; 2018 Oct; 639():1188-1204. PubMed ID: 29929287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-efficient treatment of ion exchange spent brine via electrodialysis to recover NaCl and minimize waste disposal.
    Haddad M; Bazinet L; Barbeau B
    Sci Total Environ; 2019 Nov; 690():400-409. PubMed ID: 31302538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electrodialysis.
    Balcik-Canbolat C; Sengezer C; Sakar H; Karagunduz A; Keskinler B
    Environ Technol; 2020 Jan; 41(4):440-449. PubMed ID: 30010517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential water recovery during lithium mining from high salinity brines.
    Baspineiro CF; Franco J; Flexer V
    Sci Total Environ; 2020 Jun; 720():137523. PubMed ID: 32143040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of the
    Babilas D; Kowalik-Klimczak A; Mielańczyk A
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid membrane distillation reverse electrodialysis configuration for water and energy recovery from human urine: An opportunity for off-grid decentralised sanitation.
    Mercer E; Davey CJ; Azzini D; Eusebi AL; Tierney R; Williams L; Jiang Y; Parker A; Kolios A; Tyrrel S; Cartmell E; Pidou M; McAdam EJ
    J Memb Sci; 2019 Aug; 584():343-352. PubMed ID: 31423048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine.
    Zhang S; Wei X; Cao X; Peng M; Wang M; Jiang L; Jin J
    Nat Commun; 2024 Jan; 15(1):238. PubMed ID: 38172144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation.
    Ounissi T; Belhadj Ammar R; Larchet C; Chaabane L; Baklouti L; Dammak L; Selmane Bel Hadj Hmida E
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights into the Application of Lithium-Ion Battery Materials: Selective Extraction of Lithium from Brines via a Rocking-Chair Lithium-Ion Battery System.
    He L; Xu W; Song Y; Luo Y; Liu X; Zhao Z
    Glob Chall; 2018 Feb; 2(2):1700079. PubMed ID: 31565321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a reclamation strategy for softening nanofiltration brine: A scaling-free conversion approach via continuous two-stage electrodialysis metathesis.
    Li PF; Chen QB; Wang J; Xu Y; Dong L; Wang J
    Sci Total Environ; 2022 Feb; 807(Pt 1):150374. PubMed ID: 34628293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane electrolysis for the removal of Mg
    Díaz Nieto CH; Palacios NA; Verbeeck K; Prévoteau A; Rabaey K; Flexer V
    Water Res; 2019 May; 154():117-124. PubMed ID: 30782553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a Process for Producing Battery Grade Lithium Hydroxide by Membrane Electrodialysis.
    Grageda M; Gonzalez A; Quispe A; Ushak S
    Membranes (Basel); 2020 Aug; 10(9):. PubMed ID: 32854211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration.
    Foo ZH; Rehman D; Bouma AT; Monsalvo S; Lienhard JH
    Environ Sci Technol; 2023 Apr; 57(15):6320-6330. PubMed ID: 37027336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.