These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36422147)

  • 41. Solvent-Exchange Strategy toward Aqueous Dispersible MoS
    Wang Y; Wang K; Zhang C; Zhu J; Xu J; Liu T
    Small; 2019 Nov; 15(45):e1903816. PubMed ID: 31532922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MoO
    Faizan M; Hussain S; Islam M; Kim JY; Han D; Bae JH; Vikraman D; Ali B; Abbas S; Kim HS; Singh AN; Jung J; Nam KW
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Armchair silicon carbide nanoribbon for potential anode material in lithium-ion batteries (LIBs).
    Kumar MR; Singh S
    J Mol Model; 2023 May; 29(6):193. PubMed ID: 37258798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binary Iron Sulfide as a Low-Cost and High-Performance Anode for Lithium-/Sodium-Ion Batteries.
    Tang Q; Jiang Q; Wu T; Wu T; Ding Z; Wu J; Yu H; Huang K
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52888-52898. PubMed ID: 33198468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elemental Two-Dimensional Materials for Li/Na-Ion Battery Anode Applications.
    Tian Y; Chen Y; Liu Y; Li H; Dai Z
    Chem Rec; 2022 Oct; 22(10):e202200123. PubMed ID: 35758546
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase engineering of layered anode materials during ion-intercalation in Van der Waal heterostructures.
    Parida S; Dobley A; Carter CB; Dongare AM
    Sci Rep; 2023 Apr; 13(1):5408. PubMed ID: 37012258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen-substituted borophene as a potential anode material for Li/Na-ion batteries: a first principles study.
    Wu Y; Zhang B; Hou J
    Phys Chem Chem Phys; 2021 Apr; 23(15):9270-9279. PubMed ID: 33885065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward layered MoS
    Zhang Y; Ponnuru H; Jiang Q; Shan H; Maleki Kheimeh Sari H; Li W; Wang J; Hu J; Peng J; Li X
    RSC Adv; 2022 Mar; 12(16):9917-9922. PubMed ID: 35424929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. First-principles evaluation of transition metal dichalcogenide-graphene pairs functionalized with oxygen-containing groups for sodium-ion battery anodes.
    Choi W; Hong SJ; Jeong H; Han B
    Nanoscale Adv; 2024 Mar; 6(7):1892-1899. PubMed ID: 38545291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MoS
    Chen C; Xie X; Anasori B; Sarycheva A; Makaryan T; Zhao M; Urbankowski P; Miao L; Jiang J; Gogotsi Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1846-1850. PubMed ID: 29292844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A density functional theory study of high-performance pre-lithiated MS
    Liu T; Jin Z; Liu DX; Du C; Wang L; Lin H; Li Y
    Sci Rep; 2020 Apr; 10(1):6897. PubMed ID: 32327695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rational Design of 3D Honeycomb-Like SnS
    Zhang Y; Guo Y; Wang Y; Peng T; Lu Y; Luo R; Wang Y; Liu X; Kim JK; Luo Y
    Nanoscale Res Lett; 2018 Dec; 13(1):389. PubMed ID: 30511189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries.
    Yang F; Yu F; Zhang Z; Zhang K; Lai Y; Li J
    Chemistry; 2016 Feb; 22(7):2333-8. PubMed ID: 26757402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Few-layered MoS
    Zhang P; Qin F; Zou L; Wang M; Zhang K; Lai Y; Li J
    Nanoscale; 2017 Aug; 9(33):12189-12195. PubMed ID: 28805876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two Birds with One Stone: Prelithiated Two-Dimensional Nanohybrids as High-Performance Anode Materials for Lithium-Ion Batteries.
    Wei S; Fu Y; Roy P; Tong X; Yue H; Liu M; Jaiswal HN; Shahi S; Gata YI; Butler T; Li H; Jia Q; Yao F
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35673-35681. PubMed ID: 35913052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorene as an anode material for Na-ion batteries: a first-principles study.
    Kulish VV; Malyi OI; Persson C; Wu P
    Phys Chem Chem Phys; 2015 Jun; 17(21):13921-8. PubMed ID: 25947542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of MoS2 @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries.
    Zhang X; Li X; Liang J; Zhu Y; Qian Y
    Small; 2016 May; 12(18):2484-91. PubMed ID: 26997521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries.
    Zhang X; Jin L; Dai X; Chen G; Liu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38978-38984. PubMed ID: 30354050
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Singh T; Choudhuri JR; Rana MK
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36240696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.