These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36422449)

  • 1. Significance of Free Convection Flow over an Oscillating Inclined Plate Induced by Nanofluid with Porous Medium: The Case of the Prabhakar Fractional Approach.
    Raza A; Khan U; Eldin SM; Alotaibi AM; Elattar S; Prasannakumara BC; Akkurt N; Abed AM
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact solutions via Prabhakar fractional approach to investigate heat transfer and flow features of hybrid nanofluid subject to shape and slip effects.
    Asifa ; Anwar T; Kumam P; Almusawa MY; Lone SA; Suttiarporn P
    Sci Rep; 2023 May; 13(1):7810. PubMed ID: 37183197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of Shape Factor in Heat Transfer Performance of Molybdenum-Disulfide Nanofluid in Multiple Flow Situations; A Comparative Fractional Study.
    Asifa ; Anwar T; Kumam P; Shah Z; Sitthithakerngkiet K
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat transfer analysis in a non-Newtonian hybrid nanofluid over an exponentially oscillating plate using fractional Caputo-Fabrizio derivative.
    Ul Haq S; Mahmood N; Jan SU; Sehra ; Khan I; Mohamed A
    Sci Rep; 2022 Nov; 12(1):19591. PubMed ID: 36379966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHD Free convection flows of Jeffrey fluid with Prabhakar-like fractional model subject to generalized thermal transport.
    Siddique I; Adrees R; Ahmad H; Askar S
    Sci Rep; 2023 Jun; 13(1):9289. PubMed ID: 37286712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proportional Caputo operator approach to the thermal transport of Jeffery tri-hybrid nanofluid in a rotating frame with thermal radiation.
    Arif M; Kumam P; Watthayu W; Di Persio L
    Sci Rep; 2023 Aug; 13(1):13802. PubMed ID: 37612292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space-fractional heat transfer analysis of hybrid nanofluid along a permeable plate considering inclined magnetic field.
    Khazayinejad M; Nourazar SS
    Sci Rep; 2022 Mar; 12(1):5220. PubMed ID: 35338225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Different Shaped Nanoparticles on the Performance of Engine-Oil and Kerosene-Oil: A generalized Brinkman-Type Fluid model with Non-Singular Kernel.
    Ali F; Aamina ; Khan I; Sheikh NA; Gohar M; Tlili I
    Sci Rep; 2018 Oct; 8(1):15285. PubMed ID: 30327550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape effect on MHD flow of time fractional Ferro-Brinkman type nanofluid with ramped heating.
    Saqib M; Khan I; Shafie S; Mohamad AQ
    Sci Rep; 2021 Feb; 11(1):3725. PubMed ID: 33580116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free convective trickling over a porous medium of fractional nanofluid with MHD and heat source/sink.
    Lin Y; Rehman S; Akkurt N; Shedd T; Kamran M; Qureshi MI; Botmart T; Alharbi AN; Farooq A; Khan I
    Sci Rep; 2022 Dec; 12(1):20778. PubMed ID: 36456727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of nanoparticles on vegetable oil as a cutting fluid with fractional ramped analysis.
    Hasin F; Ahmad Z; Ali F; Khan N; Khan I; Eldin SM
    Sci Rep; 2023 May; 13(1):7140. PubMed ID: 37130898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications.
    Arif M; Di Persio L; Kumam P; Watthayu W; Akgül A
    Sci Rep; 2023 Mar; 13(1):4596. PubMed ID: 36944650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity.
    Abbas SZ; Khan WA; Kadry S; Khan MI; Waqas M; Khan MI
    Comput Methods Programs Biomed; 2020 Jul; 190():105363. PubMed ID: 32062091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Framework of Magnetized MgO-Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings.
    Bhatti MM; Bég OA; Abdelsalam SI
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface.
    Ramzan M; Shah Z; Kumam P; Khan W; Watthayu W; Kumam W
    PLoS One; 2022; 17(4):e0264208. PubMed ID: 35421096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Solutions of Fractional Jeffrey Fluid with Ternary Nanoparticles Approach.
    Asjad MI; Riaz A; Alnahdi AS; Eldin SM
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient Two-Layer Electroosmotic Flow and Heat Transfer of Power-Law Nanofluids in a Microchannel.
    Deng S; Xiao T
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement in heat transfer due to hybrid nanoparticles in MHD flow of Brinkman-type fluids using Caputo fractional derivatives.
    Sheikh NA; Ching DLC; Khan I; Sakidin HB
    Sci Rep; 2022 Aug; 12(1):14117. PubMed ID: 35982149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate.
    Shahid N
    Springerplus; 2015; 4():640. PubMed ID: 26543774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Convection Flow of a Nanofluid in an Inclined Square Enclosure Partially Filled with a Porous Medium.
    Alsabery AI; Chamkha AJ; Saleh H; Hashim I
    Sci Rep; 2017 May; 7(1):2357. PubMed ID: 28539585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.