These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36422776)

  • 1. In situ degradation of organic pollutants by novel solar cell equipped soil microbial fuel cell.
    Xie W; Ren G; Zhou J; Ke Z; Ren K; Zhao X; Wang Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30210-30220. PubMed ID: 36422776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural hematite as low-cost auxiliary material for improving soil remediation by in-situ microbial community.
    Zhang C; Wang Q; Qin R; Li Z; Wang Y; Ke Z; Ren G
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):84141-84151. PubMed ID: 37355514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z
    Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity.
    Xia C; Xu M; Liu J; Guo J; Yang Y
    Bioresour Technol; 2015 Aug; 190():420-3. PubMed ID: 25936443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review.
    Xu C; Sun S; Li Y; Gao Y; Zhang W; Tian L; Li T; Du Q; Cai J; Zhou L
    Sci Total Environ; 2023 May; 874():162508. PubMed ID: 36863582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the presence of phosphate buffer solution on removal efficiency of Pb and Zn in soil by solid phase microbial fuel cells.
    Cao M; Yin J; Song T; Xie J
    Biotechnol Lett; 2022 Dec; 44(12):1495-1505. PubMed ID: 36269494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in soil microbial fuel cells based self-powered biosensor.
    Abbas SZ; Wang JY; Wang H; Wang JX; Wang YT; Yong YC
    Chemosphere; 2022 Sep; 303(Pt 1):135036. PubMed ID: 35609665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals.
    Wang SH; Wang JW; Zhao LT; Abbas SZ; Yang Z; Yong YC
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.
    Yu B; Tian J; Feng L
    J Hazard Mater; 2017 Aug; 336():110-118. PubMed ID: 28494298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of biotic nitrate reduction in constructed photoautotrophic biofilm-soil microbial fuel cells.
    Cheng Y; Ding J; Wan J; Tang L; Joseph A; Usman M; Zhu N; Zhang Y; Sun H; Rene ER; Lendvay M; Li Y
    J Environ Manage; 2024 Jun; 360():121066. PubMed ID: 38744202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures.
    Ye TR; Song N; Chen M; Yan ZS; Jiang HL
    Environ Pollut; 2016 Nov; 218():59-65. PubMed ID: 27552038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater.
    Yang J; Zhao YG; Liu X; Fu Y
    Mar Pollut Bull; 2022 Sep; 182():114013. PubMed ID: 35939936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.).
    Gustave W; Yuan ZF; Li X; Ren YX; Feng WJ; Shen H; Chen Z
    Environ Pollut; 2020 May; 260():113989. PubMed ID: 31991356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-enhanced bio-electro-Fenton driven by sediment microbial fuel cell for ametryn degradation in simulated seawater.
    Cai L; Zhang H; Dong B; Du J; Tian Y; Zhang F
    J Hazard Mater; 2023 Apr; 448():130980. PubMed ID: 36860054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell.
    Yu B; Feng L; He Y; Yang L; Xun Y
    J Hazard Mater; 2021 Jan; 401():123394. PubMed ID: 32659585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system.
    Li B; Xu D; Feng L; Liu Y; Zhang L
    Environ Pollut; 2022 Mar; 297():118771. PubMed ID: 35007677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes.
    Li C; Mei T; Song TS; Xie J
    Bioprocess Biosyst Eng; 2022 Jul; 45(7):1137-1147. PubMed ID: 35624323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating.
    Guo F; Shi Z; Yang K; Wu Y; Liu H
    Sci Total Environ; 2019 Aug; 678():533-542. PubMed ID: 31078843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Water Sci Technol; 2013; 68(3):537-43. PubMed ID: 23925180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.