These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36422776)

  • 21. Electrical current generation from a continuous flow macrophyte biocathode sediment microbial fuel cell (mSMFC) during the degradation of pollutants in urban river sediment.
    Kabutey FT; Ding J; Zhao Q; Antwi P; Quashie FK
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35364-35380. PubMed ID: 32594445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.
    Lee YS; An J; Kim B; Park H; Kim J; Chang IS
    PLoS One; 2015; 10(12):e0145430. PubMed ID: 26714176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Bioresour Technol; 2014 Mar; 155():84-90. PubMed ID: 24434698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.
    Yang Y; Lu Z; Lin X; Xia C; Sun G; Lian Y; Xu M
    Bioresour Technol; 2015 Mar; 179():615-618. PubMed ID: 25549820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.
    Li X; Wang X; Zhao Q; Wan L; Li Y; Zhou Q
    Biosens Bioelectron; 2016 Nov; 85():135-141. PubMed ID: 27162144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of cellulose degradation in freshwater sediments by a sediment microbial fuel cell.
    Zhu D; Wang DB; Song TS; Guo T; Wei P; Ouyang P; Xie J
    Biotechnol Lett; 2016 Feb; 38(2):271-7. PubMed ID: 26543037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.
    Zhou YL; Jiang HL; Cai HY
    J Hazard Mater; 2015 Apr; 287():7-15. PubMed ID: 25621829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function.
    Yang X; Chen S
    Sci Total Environ; 2021 Feb; 756():144145. PubMed ID: 33303196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC).
    Wang X; Zhi Y; Chen Y; Shen N; Wang G; Yan Y
    Chemosphere; 2022 Mar; 291(Pt 3):132927. PubMed ID: 34793847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.
    Xu P; Xiao ER; Xu D; Zhou Y; He F; Liu BY; Zeng L; Wu ZB
    PLoS One; 2017; 12(2):e0172757. PubMed ID: 28241072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction and operation of freshwater sediment microbial fuel cell for electricity generation.
    Song TS; Yan ZS; Zhao ZW; Jiang HL
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):621-7. PubMed ID: 21221652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells.
    Zheng W; Cai T; Huang M; Chen D
    J Biosci Bioeng; 2017 Nov; 124(5):551-558. PubMed ID: 28625613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms.
    Wang H; Cao X; Li L; Fang Z; Li X
    Ecotoxicol Environ Saf; 2018 Jan; 147():735-741. PubMed ID: 28942276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal effect of enrofloxacin from mariculture sediments by bioelectrochemical system and analysis of microbial community structure.
    Ding N; Jin C; Zhao N; Zhao Y; Guo L; Gao M; She Z; Ji J
    Environ Pollut; 2022 Oct; 311():119641. PubMed ID: 35787425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of organic matter and electricity generation of sediments from Progreso, Yucatan, Mexico, in a sediment microbial fuel cell.
    González-Gamboa NK; Valdés-Lozano DS; Barahona-Pérez LF; Alzate-Gaviria L; Domínguez-Maldonado JA
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5868-5876. PubMed ID: 28063086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing strategies for operating Microbial Electrochemical Systems to clean up polluted soils under non-flooded conditions.
    Domínguez-Garay A; Esteve-Núñez A
    Bioelectrochemistry; 2018 Dec; 124():142-148. PubMed ID: 30029035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system.
    Wang H; Yi S; Cao X; Fang Z; Li X
    Ecotoxicol Environ Saf; 2017 May; 139():172-178. PubMed ID: 28135664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous degradation of refractory organic pesticide and bioelectricity generation in a soil microbial fuel cell with different conditions.
    Cao X; Yu C; Wang H; Zhou F; Li X
    Environ Technol; 2017 Apr; 38(8):1043-1050. PubMed ID: 27457057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.