BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36423411)

  • 1. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass.
    Khan AHA; Kiyani A; Santiago-Herrera M; Ibáñez J; Yousaf S; Iqbal M; Martel-Martín S; Barros R
    J Environ Manage; 2023 Jan; 326(Pt B):116700. PubMed ID: 36423411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges.
    Shen X; Dai M; Yang J; Sun L; Tan X; Peng C; Ali I; Naz I
    Chemosphere; 2022 Mar; 291(Pt 3):132979. PubMed ID: 34801572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review.
    Jiang SJ; Sun J; Tong G; Ding H; Ouyang J; Zhou Q; Fu Y; Zhong ME
    Chemosphere; 2022 Mar; 290():133266. PubMed ID: 34914959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation.
    Gulzar ABM; Mazumder PB
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progress in phytoremediation of heavy-metal contaminated soils with high-biomass economic plants].
    Jia W; Lü S; Lin K; Ma M; Wu S; Tang Y; Qiu R; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):416-425. PubMed ID: 32237536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on disposal and utilization of phytoremediation plants containing heavy metals.
    Liu Z; Tran KQ
    Ecotoxicol Environ Saf; 2021 Dec; 226():112821. PubMed ID: 34571420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of metal transporters in phytoremediation: A closer look at Arabidopsis.
    Maharajan T; Chellasamy G; Tp AK; Ceasar SA; Yun K
    Chemosphere; 2023 Jan; 310():136881. PubMed ID: 36257391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives.
    Khan AHA; Kiyani A; Mirza CR; Butt TA; Barros R; Ali B; Iqbal M; Yousaf S
    Environ Res; 2021 Apr; 195():110780. PubMed ID: 33539835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects.
    Jaskulak M; Grobelak A; Vandenbulcke F
    Chemosphere; 2020 Jun; 249():126196. PubMed ID: 32088456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach.
    Vocciante M; Caretta A; Bua L; Bagatin R; Franchi E; Petruzzelli G; Ferro S
    J Environ Manage; 2019 May; 237():560-568. PubMed ID: 30826637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal.
    Chu S; Jacobs DF; Liao D; Liang LL; Wu D; Chen P; Lai C; Zhong F; Zeng S
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35184-35199. PubMed ID: 30334137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials.
    Awad M; El-Desoky MA; Ghallab A; Kubes J; Abdel-Mawly SE; Danish S; Ratnasekera D; Sohidul Islam M; Skalicky M; Brestic M; Baazeem A; Alotaibi SS; Javed T; Shabbir R; Fahad S; Habib Ur Rahman M; El Sabagh A
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34199536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: A comparative Life Cycle Assessment.
    Espada JJ; Rodríguez R; Gari V; Salcedo-Abraira P; Bautista LF
    Sci Total Environ; 2022 Sep; 840():156675. PubMed ID: 35716747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.