BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36423743)

  • 1. Transcriptomic and weighted gene co-expression network analysis of tropic and temperate maize inbred lines recovering from heat stress.
    Long Y; Qin Q; Zhang J; Zhu Z; Liu Y; Gu L; Jiang H; Si W
    Plant Sci; 2023 Feb; 327():111538. PubMed ID: 36423743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (
    Xue M; Han X; Zhang L; Chen S
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response.
    Yang Y; Li Z; Zhang J
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892463
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptomic Analysis of Three Differentially Senescing Maize (
    Han X; Zhang D; Hao H; Luo Y; Zhu Z; Kuai B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome response of maize (Zea mays L.) seedlings to heat stress.
    Li ZG; Ye XY
    Protoplasma; 2022 Mar; 259(2):357-369. PubMed ID: 34117937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant.
    Yan Q; Zong X; Wu F; Li J; Ma T; Zhao Y; Ma Q; Wang P; Wang Y; Zhang J
    BMC Genomics; 2020 Oct; 21(1):715. PubMed ID: 33066732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency.
    Guo S; Liu Z; Sheng H; Olukayode T; Zhou Z; Liu Y; Wang M; He M; Kochian L; Qin Y
    Planta; 2023 Oct; 258(5):99. PubMed ID: 37837470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiles of cell-wall related genes vary broadly between two common maize inbreds during stem development.
    Penning BW; Shiga TM; Klimek JF; SanMiguel PJ; Shreve J; Thimmapuram J; Sykes RW; Davis MF; McCann MC; Carpita NC
    BMC Genomics; 2019 Oct; 20(1):785. PubMed ID: 31664907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize.
    Liu S; Zenda T; Dong A; Yang Y; Wang N; Duan H
    Front Genet; 2021; 12():645443. PubMed ID: 33574835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation.
    Niu L; Du C; Wang W; Zhang M; Wang W; Liu H; Zhang J; Wu X
    BMC Plant Biol; 2022 Jul; 22(1):359. PubMed ID: 35869440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize.
    Jiang L; Hu W; Qian Y; Ren Q; Zhang J
    Gene; 2021 Feb; 770():145348. PubMed ID: 33333230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues.
    Shi Y; Li Y; Guo Y; Borrego EJ; Wei Z; Ren H; Ma Z; Yan Y
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation.
    Lin CW; Fu SF; Liu YJ; Chen CC; Chang CH; Yang YW; Huang HJ
    BMC Plant Biol; 2019 Jan; 19(1):3. PubMed ID: 30606114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress.
    Guo J; Wang Z; Qu L; Hu Y; Lu D
    BMC Plant Biol; 2022 Sep; 22(1):432. PubMed ID: 36076169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage.
    Zhao P; Sun L; Zhang S; Jiao B; Wang J; Ma C
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize.
    Wang H; Gu L; Zhang X; Liu M; Jiang H; Cai R; Zhao Y; Cheng B
    Plant Mol Biol; 2018 Oct; 98(3):187-203. PubMed ID: 30327994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10.
    Guo XL; Yuan SN; Zhang HN; Zhang YY; Zhang YJ; Wang GY; Li YQ; Li GL
    BMC Plant Biol; 2020 Aug; 20(1):364. PubMed ID: 32746866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.