These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36423757)

  • 1. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass.
    Mohanakrishna G; Modestra JA
    Bioresour Technol; 2023 Feb; 369():128386. PubMed ID: 36423757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH
    Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.
    Si BC; Li JM; Zhu ZB; Zhang YH; Lu JW; Shen RX; Zhang C; Xing XH; Liu Z
    Biotechnol Biofuels; 2016; 9():254. PubMed ID: 27895708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.
    Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF
    Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark fermentative hydrogen production: Potential of food waste as future energy needs.
    Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O
    Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects.
    Wang J; Ma D; Lou Y; Ma J; Xing D
    Sci Total Environ; 2023 Dec; 905():166992. PubMed ID: 37717772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up.
    Liu Z; Si B; Li J; He J; Zhang C; Lu Y; Zhang Y; Xing XH
    Curr Opin Biotechnol; 2018 Apr; 50():25-31. PubMed ID: 28892667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges.
    Chandran EM; Mohan E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102129-102157. PubMed ID: 37684507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes.
    Kucharska K; Rybarczyk P; Hołowacz I; Łukajtis R; Glinka M; Kamiński M
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohythane: a Potential Biofuel of the Future.
    Ghosh S; Kar D
    Appl Biochem Biotechnol; 2024 May; 196(5):2957-2975. PubMed ID: 36576653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review.
    Singh R; Kumar R; Sarangi PK; Kovalev AA; Vivekanand V
    Bioresour Technol; 2023 Feb; 369():128458. PubMed ID: 36503099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach.
    Saadatinavaz F; Karimi K; Denayer JFM
    Bioresour Technol; 2021 Dec; 341():125834. PubMed ID: 34479139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges.
    Kumar M; Sun Y; Rathour R; Pandey A; Thakur IS; Tsang DCW
    Sci Total Environ; 2020 May; 716():137116. PubMed ID: 32059310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept.
    Ruiz HA; Sganzerla WG; Larnaudie V; Veersma RJ; van Erven G; Shiva ; Ríos-González LJ; Rodríguez-Jasso RM; Rosero-Chasoy G; Ferrari MD; Kabel MA; Forster-Carneiro T; Lareo C
    Bioresour Technol; 2023 Feb; 369():128469. PubMed ID: 36509309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects.
    Singh T; Alhazmi A; Mohammad A; Srivastava N; Haque S; Sharma S; Singh R; Yoon T; Gupta VK
    Bioresour Technol; 2021 Oct; 338():125511. PubMed ID: 34274587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery - A review.
    Dey N; Kumar G; Vickram AS; Mohan M; Singhania RR; Patel AK; Dong CD; Anbarasu K; Thanigaivel S; Ponnusamy VK
    Bioresour Technol; 2022 Jan; 344(Pt A):126171. PubMed ID: 34695586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy.
    Yang E; Chon K; Kim KY; Le GTH; Nguyen HY; Le TTQ; Nguyen HTT; Jae MR; Ahmad I; Oh SE; Chae KJ
    Bioresour Technol; 2023 Feb; 369():128380. PubMed ID: 36427768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future.
    Nair LG; Agrawal K; Verma P
    Biotechnol Genet Eng Rev; 2022 Oct; 38(2):288-338. PubMed ID: 35670485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in nanomaterials induced biohydrogen production using waste biomass.
    Srivastava N; Srivastava M; Mishra PK; Kausar MA; Saeed M; Gupta VK; Singh R; Ramteke PW
    Bioresour Technol; 2020 Jul; 307():123094. PubMed ID: 32249026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.