These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36424397)

  • 1. Optically trapped room temperature polariton condensate in an organic semiconductor.
    Wei M; Verstraelen W; Orfanakis K; Ruseckas A; Liew TCH; Samuel IDW; Turnbull GA; Ohadi H
    Nat Commun; 2022 Nov; 13(1):7191. PubMed ID: 36424397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature.
    Zhao J; Su R; Fieramosca A; Zhao W; Du W; Liu X; Diederichs C; Sanvitto D; Liew TCH; Xiong Q
    Nano Lett; 2021 Apr; 21(7):3331-3339. PubMed ID: 33797259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Writing of Room Temperature Polariton Condensate Lattice.
    Yadav RK; Satapathy S; Deshmukh P; Datta B; Sharma A; Olsson AH; Chen J; Laursen BW; Flood AH; Sfeir MY; Menon VM
    Nano Lett; 2024 Apr; ():. PubMed ID: 38598721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An exciton-polariton laser based on biologically produced fluorescent protein.
    Dietrich CP; Steude A; Tropf L; Schubert M; Kronenberg NM; Ostermann K; Höfling S; Gather MC
    Sci Adv; 2016 Aug; 2(8):e1600666. PubMed ID: 27551686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites.
    Su R; Wang J; Zhao J; Xing J; Zhao W; Diederichs C; Liew TCH; Xiong Q
    Sci Adv; 2018 Oct; 4(10):eaau0244. PubMed ID: 30397645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity.
    Xiong Z; Wu H; Cai Y; Zhai X; Liu T; Li B; Song T; Guo L; Liu Z; Dong Y; Liu P; Ren Y
    Nano Lett; 2024 Apr; 24(16):4959-64. PubMed ID: 38620069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear interactions in an organic polariton condensate.
    Daskalakis KS; Maier SA; Murray R; Kéna-Cohen S
    Nat Mater; 2014 Mar; 13(3):271-8. PubMed ID: 24509602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polariton condensate trapping by parametric pair scattering.
    Paschos GG; Tzimis A; Tsintzos SI; Savvidis PG
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32396883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation Oscillations and Ultrafast Emission Pulses in a Disordered Expanding Polariton Condensate.
    Pieczarka M; Syperek M; Dusanowski Ł; Opala A; Langer F; Schneider C; Höfling S; Sęk G
    Sci Rep; 2017 Aug; 7(1):7094. PubMed ID: 28769102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice.
    Betzold S; Düreth J; Dusel M; Emmerling M; Bieganowska A; Ohmer J; Fischer U; Höfling S; Klembt S
    Adv Sci (Weinh); 2024 Jun; 11(21):e2400672. PubMed ID: 38605674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets.
    Su R; Diederichs C; Wang J; Liew TCH; Zhao J; Liu S; Xu W; Chen Z; Xiong Q
    Nano Lett; 2017 Jun; 17(6):3982-3988. PubMed ID: 28541055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation.
    Hou S; Khatoniar M; Ding K; Qu Y; Napolov A; Menon VM; Forrest SR
    Adv Mater; 2020 Jul; 32(28):e2002127. PubMed ID: 32484288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrically pumped polariton laser.
    Schneider C; Rahimi-Iman A; Kim NY; Fischer J; Savenko IG; Amthor M; Lermer M; Wolf A; Worschech L; Kulakovskii VD; Shelykh IA; Kamp M; Reitzenstein S; Forchel A; Yamamoto Y; Höfling S
    Nature; 2013 May; 497(7449):348-52. PubMed ID: 23676752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities.
    Jiang Z; Ren A; Yan Y; Yao J; Zhao YS
    Adv Mater; 2022 Jan; 34(4):e2106095. PubMed ID: 34881466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical spin hall effect in exciton-polariton condensates in lead halide perovskite microcavities.
    Xiang B; Li Y; Spencer MS; Dai Y; Bai Y; Basov DN; Zhu XY
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38661194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum vortex formation in the "rotating bucket" experiment with polariton condensates.
    Gnusov I; Harrison S; Alyatkin S; Sitnik K; Töpfer J; Sigurdsson H; Lagoudakis P
    Sci Adv; 2023 Jan; 9(4):eadd1299. PubMed ID: 36696501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field.
    Walker P; Liew TC; Sarkar D; Durska M; Love AP; Skolnick MS; Roberts JS; Shelykh IA; Kavokin AV; Krizhanovskii DN
    Phys Rev Lett; 2011 Jun; 106(25):257401. PubMed ID: 21770670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer.
    Plumhof JD; Stöferle T; Mai L; Scherf U; Mahrt RF
    Nat Mater; 2014 Mar; 13(3):247-52. PubMed ID: 24317189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.
    Ren J; Liao Q; Huang H; Li Y; Gao T; Ma X; Schumacher S; Yao J; Bai S; Fu H
    Nano Lett; 2020 Oct; 20(10):7550-7557. PubMed ID: 32986448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-polariton trapping and potential landscape engineering.
    Schneider C; Winkler K; Fraser MD; Kamp M; Yamamoto Y; Ostrovskaya EA; Höfling S
    Rep Prog Phys; 2017 Jan; 80(1):016503. PubMed ID: 27841166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.