These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36424422)

  • 1. Biomarkers for rhythmic and discrete dynamic primitives in locomotion.
    Moura Coelho R; Hirai H; Martins J; Krebs HI
    Sci Rep; 2022 Nov; 12(1):20165. PubMed ID: 36424422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic primitives in the control of locomotion.
    Hogan N; Sternad D
    Front Comput Neurosci; 2013; 7():71. PubMed ID: 23801959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The primacy of rhythm: how discrete actions merge into a stable rhythmic pattern.
    Zhang Z; Sternad D
    J Neurophysiol; 2019 Feb; 121(2):574-587. PubMed ID: 30565969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On rhythmic and discrete movements: reflections, definitions and implications for motor control.
    Hogan N; Sternad D
    Exp Brain Res; 2007 Jul; 181(1):13-30. PubMed ID: 17530234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of the coordination of pointing during locomotion.
    Chiovetto E; Giese MA
    PLoS One; 2013; 8(11):e79555. PubMed ID: 24260249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic primitives of motor behavior.
    Hogan N; Sternad D
    Biol Cybern; 2012 Dec; 106(11-12):727-39. PubMed ID: 23124919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Phase Estimation in a Variety of Locomotion Modes Using Adaptive Dynamic Movement Primitives.
    Eken H; Pergolini A; Mazzarini A; Livolsi C; Fagioli I; Penna MF; Gruppioni E; Trigili E; Crea S; Vitiello N
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmic arm movements are less affected than discrete ones after a stroke.
    Leconte P; Orban de Xivry JJ; Stoquart G; Lejeune T; Ronsse R
    Exp Brain Res; 2016 Jun; 234(6):1403-17. PubMed ID: 26749181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling discrete and rhythmic movements through motor primitives: a review.
    Degallier S; Ijspeert A
    Biol Cybern; 2010 Oct; 103(4):319-38. PubMed ID: 20697734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
    Marchal-Crespo L; Bannwart M; Riener R; Vallery H
    IEEE Trans Haptics; 2015; 8(2):222-34. PubMed ID: 25438325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitions between discrete and rhythmic primitives in a unimanual task.
    Sternad D; Marino H; Charles SK; Duarte M; Dipietro L; Hogan N
    Front Comput Neurosci; 2013; 7():90. PubMed ID: 23888139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic robotic training enhances motor skills of both rhythmic and discrete upper-limb movements after stroke: a longitudinal pilot study.
    Leconte P; Stoquart G; Lejeune T; Ronsse R
    Int J Rehabil Res; 2019 Mar; 42(1):46-55. PubMed ID: 30371552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between rhythmic and discrete components in a bimanual task.
    Wei K; Wertman G; Sternad D
    Motor Control; 2003 Apr; 7(2):134-54. PubMed ID: 13679627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of rhythmicity and amplitude on transfer of motor learning.
    Ben-Tov M; Levy-Tzedek S; Karniel A
    PLoS One; 2012; 7(10):e46983. PubMed ID: 23056549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis.
    Fiander MD; Stifani N; Nichols M; Akay T; Robertson GS
    Behav Brain Res; 2017 Jan; 317():95-108. PubMed ID: 27639322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.