These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36424998)

  • 1. Strain-Tuneable Magnetism and Spintronics of Distorted Monovacancies in Graphene.
    Zhou H; Mallia G; Harrison NM
    J Phys Chem C Nanomater Interfaces; 2022 Nov; 126(45):19435-19445. PubMed ID: 36424998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural reconstruction of the graphene monovacancy.
    Robertson AW; Montanari B; He K; Allen CS; Wu YA; Harrison NM; Kirkland AI; Warner JH
    ACS Nano; 2013 May; 7(5):4495-502. PubMed ID: 23590499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monovacancy-induced magnetism in graphene bilayers.
    Choi S; Jeong BW; Kim S; Kim G
    J Phys Condens Matter; 2008 Jun; 20(23):235220. PubMed ID: 21694311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Mono-Vacancies of Oxygen and Manganese on the Properties of the MnO
    Morinson-Negrete JD; Ortega-López C; Espitia-Rico MJ
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic stability of magnetic states of monovacancy in graphene revealed by ab initio molecular dynamics simulations.
    Gao F; Gao S
    Sci Rep; 2019 Jan; 9(1):751. PubMed ID: 30679667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects.
    Singh R; Kroll P
    J Phys Condens Matter; 2009 May; 21(19):196002. PubMed ID: 21825500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.
    Fernández ACR; Castellani NJ
    Chemphyschem; 2017 Aug; 18(15):2065-2080. PubMed ID: 28494119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-Induced intrinsic magnetism in wide-gap III nitrides.
    Dev P; Xue Y; Zhang P
    Phys Rev Lett; 2008 Mar; 100(11):117204. PubMed ID: 18517820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS
    Neupane HK; Adhikari NP
    J Mol Model; 2021 Feb; 27(3):82. PubMed ID: 33580291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti
    Sakhraoui T; Karlický F
    ACS Omega; 2022 Nov; 7(46):42221-42232. PubMed ID: 36440157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.
    Zhang Y; Sahoo M; Wang J
    Nanotechnology; 2016 Oct; 27(43):435206. PubMed ID: 27659609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric and electronic structure of multilayered graphene: synergy of the nondirective ripples and the number of layers.
    Cui TT; Li JC; Gao W; Jiang Q
    Phys Chem Chem Phys; 2018 Jan; 20(4):2230-2237. PubMed ID: 29303186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-tuned magnetism and half-metal to metal transition in defective BCN monolayer.
    Wang J; Kou L; Ni Y; Hu X
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33636712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.
    Rybkin AG; Rybkina AA; Otrokov MM; Vilkov OY; Klimovskikh II; Petukhov AE; Filianina MV; Voroshnin VY; Rusinov IP; Ernst A; Arnau A; Chulkov EV; Shikin AM
    Nano Lett; 2018 Mar; 18(3):1564-1574. PubMed ID: 29365269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling magnetic transition of monovacancy graphene by shear distortion.
    Gao F; Gao S
    Sci Rep; 2017 May; 7(1):1792. PubMed ID: 28496127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the interplay between geometrical structure and magnetic anisotropy: a relativistic density-functional study of mixed Pt-Co and Pt-Fe trimers and tetramers in the gas-phase and supported on graphene.
    Błoński P; Hafner J
    J Phys Condens Matter; 2015 Feb; 27(4):046002. PubMed ID: 25563574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable magnetism of a single-carbon vacancy in graphene.
    Zhang Y; Gao F; Gao S; He L
    Sci Bull (Beijing); 2020 Feb; 65(3):194-200. PubMed ID: 36659172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric and electronic structures of mono- and di-vacancies in phosphorene.
    Hu T; Dong J
    Nanotechnology; 2015 Feb; 26(6):065705. PubMed ID: 25597897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and magnetic properties of a defective graphene buffer layer grown on SiC(0001): a DFT study.
    Huelmo CP; Menezes MG; Capaz RB; Denis PA
    Phys Chem Chem Phys; 2020 Jul; 22(28):16096-16106. PubMed ID: 32638763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.