These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36426025)

  • 1. Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977-2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea.
    Pandey RS; Liou YA
    Data Brief; 2022 Dec; 45():108646. PubMed ID: 36426025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Typhoon footprints on ocean surface temperature and chlorophyll-a in the South China Sea.
    Wang Y; Xiu P
    Sci Total Environ; 2022 Sep; 840():156686. PubMed ID: 35714739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas.
    Yamada M; Zheng J; Wang ZL
    Sci Total Environ; 2006 Jul; 366(1):242-52. PubMed ID: 16165190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures.
    Narapusetty B
    Theor Appl Climatol; 2018; 133(1):113-121. PubMed ID: 30996503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basin-wide responses of the South China Sea environment to Super Typhoon Mangkhut (2018).
    Liu S; Li J; Sun L; Wang G; Tang D; Huang P; Yan H; Gao S; Liu C; Gao Z; Li Y; Yang Y
    Sci Total Environ; 2020 Aug; 731():139093. PubMed ID: 32416350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendencies, variability and persistence of sea surface temperature anomalies.
    Bulgin CE; Merchant CJ; Ferreira D
    Sci Rep; 2020 May; 10(1):7986. PubMed ID: 32409718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of 50-y record of surface (137)Cs concentrations in the global ocean using the HAM-global database.
    Inomata Y; Aoyama M; Hirose K
    J Environ Monit; 2009 Jan; 11(1):116-25. PubMed ID: 19137147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting upper ocean temperature responses induced by intense typhoons in mid-latitude.
    Son JH; Heo KY; Choi JW; Kwon JI
    Sci Rep; 2022 Apr; 12(1):5752. PubMed ID: 35388123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D.
    Linsley BK; Wellington GM; Schrag DP
    Science; 2000 Nov; 290(5494):1145-8. PubMed ID: 11073450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.
    Mei W; Xie SP; Primeau F; McWilliams JC; Pasquero C
    Sci Adv; 2015 May; 1(4):e1500014. PubMed ID: 26601179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sea surface temperature variability: patterns and mechanisms.
    Deser C; Alexander MA; Xie SP; Phillips AS
    Ann Rev Mar Sci; 2010; 2():115-43. PubMed ID: 21141660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intense atmospheric frontogenesis by air-sea coupling processes during the passage of Typhoon Lingling captured at Ieodo Ocean Research Station.
    Yang S; Moon IJ; Bae HJ; Kim BM; Byun DS; Lee HY
    Sci Rep; 2022 Sep; 12(1):15513. PubMed ID: 36109606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily impact of the simultaneous passage of binary typhoons on sea surface chlorophyll-a concentration dynamics in the Northwestern Pacific.
    Xing M; Zhang J; Jiang L; Wang X; Men Y; Seka AM; Yao F
    Sci Total Environ; 2024 Apr; 921():171166. PubMed ID: 38401738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtropical Mode Water south of Japan impacts typhoon intensity.
    Oka E; Sugimoto S; Kobashi F; Nishikawa H; Kanada S; Nasuno T; Kawamura R; Nonaka M
    Sci Adv; 2023 Sep; 9(37):eadi2793. PubMed ID: 37703371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative analysis of marine heatwaves in response to rising sea surface temperature.
    Cheng Y; Zhang M; Song Z; Wang G; Zhao C; Shu Q; Zhang Y; Qiao F
    Sci Total Environ; 2023 Jul; 881():163396. PubMed ID: 37044346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing recent warming using instrumentally homogeneous sea surface temperature records.
    Hausfather Z; Cowtan K; Clarke DC; Jacobs P; Richardson M; Rohde R
    Sci Adv; 2017 Jan; 3(1):e1601207. PubMed ID: 28070556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropical coral reefs in Sri Lanka are threatened due to the fluctuation of seasonal and interannual sea surface temperature.
    Thilakarathne EPDN; Jayarathna WNDS; Sewwandi SWR; Jayamanne SC; Liyanage NPP
    Environ Monit Assess; 2023 May; 195(6):756. PubMed ID: 37247096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.
    Iglesias I; Lorenzo MN; Lázaro C; Fernandes MJ; Bastos L
    Sci Total Environ; 2017 Dec; 609():861-874. PubMed ID: 28783913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distributions and direct radiative effects of marine aerosols over East Asia in springtime.
    Li J; Han Z; Yao X; Xie Z; Tan S
    Sci Total Environ; 2019 Feb; 651(Pt 2):1913-1925. PubMed ID: 30317178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.