These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36426175)

  • 1. Detecting the orientation of newly-deposited crystalline cellulose with fluorescent CBM3.
    Pfaff SA; Wang X; Wagner ER; Wilson LA; Kiemle SN; Cosgrove DJ
    Cell Surf; 2022 Dec; 8():100089. PubMed ID: 36426175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.
    Ruel K; Nishiyama Y; Joseleau JP
    Plant Sci; 2012 Sep; 193-194():48-61. PubMed ID: 22794918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils.
    Zhang M; Wang B; Xu B
    Phys Chem Chem Phys; 2013 May; 15(17):6508-15. PubMed ID: 23532050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping single molecular binding kinetics of carbohydrate-binding module with crystalline cellulose by atomic force microscopy recognition imaging.
    Zhang M; Wang B; Xu B
    J Phys Chem B; 2014 Jun; 118(24):6714-20. PubMed ID: 24878225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes.
    Blake AW; McCartney L; Flint JE; Bolam DN; Boraston AB; Gilbert HJ; Knox JP
    J Biol Chem; 2006 Sep; 281(39):29321-9. PubMed ID: 16844685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and characterization of carbohydrate-binding modules for imaging cellulose fibrils biosynthesis in plant protoplasts.
    Jayachandran D; Smith P; Irfan M; Sun J; Yarborough JM; Bomble YJ; Lam E; Chundawat SPS
    Biotechnol Bioeng; 2023 Aug; 120(8):2253-2268. PubMed ID: 37386894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module.
    Hernandez-Gomez MC; Rydahl MG; Rogowski A; Morland C; Cartmell A; Crouch L; Labourel A; Fontes CM; Willats WG; Gilbert HJ; Knox JP
    FEBS Lett; 2015 Aug; 589(18):2297-303. PubMed ID: 26193423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose.
    Zhang M; Wu SC; Zhou W; Xu B
    J Phys Chem B; 2012 Aug; 116(33):9949-56. PubMed ID: 22849362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pontamine fast scarlet 4B bifluorescence and measurements of cellulose microfibril angles.
    Thomas J; Idris NA; Collings DA
    J Microsc; 2017 Oct; 268(1):13-27. PubMed ID: 28654160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.
    Zhang M; Chen G; Kumar R; Xu B
    Biotechnol Biofuels; 2013 Oct; 6(1):147. PubMed ID: 24119447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Onion Epidermal Cell Walls for Imaging by Atomic Force Microscopy (AFM).
    Zhang T; Cosgrove DJ
    Bio Protoc; 2017 Dec; 7(24):e2647. PubMed ID: 34595310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling loosening from softening: insights into primary cell wall structure.
    Zhang T; Tang H; Vavylonis D; Cosgrove DJ
    Plant J; 2019 Dec; 100(6):1101-1117. PubMed ID: 31469935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags.
    Zheng Y; Wang X; Chen Y; Wagner E; Cosgrove DJ
    Plant J; 2018 Jan; 93(2):211-226. PubMed ID: 29160933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of carbohydrate binding modules, CBM3A and CBM3B in stability and catalysis by a β-1,4 endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus ATCC 27405.
    Mandal A; Thakur A; Goyal A
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125164. PubMed ID: 37270124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy of microfibrils in primary cell walls.
    Davies LM; Harris PJ
    Planta; 2003 Jun; 217(2):283-9. PubMed ID: 12783336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects.
    Hervé C; Rogowski A; Blake AW; Marcus SE; Gilbert HJ; Knox JP
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15293-8. PubMed ID: 20696902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging cell wall architecture in single Zinnia elegans tracheary elements.
    Lacayo CI; Malkin AJ; Holman HY; Chen L; Ding SY; Hwang MS; Thelen MP
    Plant Physiol; 2010 Sep; 154(1):121-33. PubMed ID: 20592039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.