These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 36426541)
1. Brain-Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not? Colucci A; Vermehren M; Cavallo A; Angerhöfer C; Peekhaus N; Zollo L; Kim WS; Paik NJ; Soekadar SR Neurorehabil Neural Repair; 2022 Dec; 36(12):747-756. PubMed ID: 36426541 [TBL] [Abstract][Full Text] [Related]
2. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777 [TBL] [Abstract][Full Text] [Related]
3. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633 [TBL] [Abstract][Full Text] [Related]
4. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. Proietti T; Crocher V; Roby-Brami A; Jarrasse N IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194 [TBL] [Abstract][Full Text] [Related]
5. Brain-machine interfaces in neurorehabilitation of stroke. Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973 [TBL] [Abstract][Full Text] [Related]
6. NeuroSuitUp: System Architecture and Validation of a Motor Rehabilitation Wearable Robotics and Serious Game Platform. Mitsopoulos K; Fiska V; Tagaras K; Papias A; Antoniou P; Nizamis K; Kasimis K; Sarra PD; Mylopoulou D; Savvidis T; Praftsiotis A; Arvanitidis A; Lyssas G; Chasapis K; Moraitopoulos A; Astaras A; Bamidis PD; Athanasiou A Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991992 [TBL] [Abstract][Full Text] [Related]
7. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review. Gandolfi M; Valè N; Posteraro F; Morone G; Dell'orco A; Botticelli A; Dimitrova E; Gervasoni E; Goffredo M; Zenzeri J; Antonini A; Daniele C; Benanti P; Boldrini P; Bonaiuti D; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Petrarca M; Picelli A; Senatore M; Turchetti G; Giansanti D; Mazzoleni S; Eur J Phys Rehabil Med; 2021 Oct; 57(5):831-840. PubMed ID: 34042413 [TBL] [Abstract][Full Text] [Related]
8. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. Molteni F; Gasperini G; Cannaviello G; Guanziroli E PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. Yang S; Li R; Li H; Xu K; Shi Y; Wang Q; Yang T; Sun X Biomed Res Int; 2021; 2021():9967348. PubMed ID: 34239936 [TBL] [Abstract][Full Text] [Related]
11. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Casey A; Azhar H; Grzes M; Sakel M Disabil Rehabil Assist Technol; 2021 Jul; 16(5):525-537. PubMed ID: 31711336 [TBL] [Abstract][Full Text] [Related]
12. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Khan MA; Das R; Iversen HK; Puthusserypady S Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038 [TBL] [Abstract][Full Text] [Related]
13. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025 [TBL] [Abstract][Full Text] [Related]
14. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. Behboodi A; Lee WA; Hinchberger VS; Damiano DL J Neuroeng Rehabil; 2022 Sep; 19(1):104. PubMed ID: 36171602 [TBL] [Abstract][Full Text] [Related]
15. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668 [No Abstract] [Full Text] [Related]
16. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Alam M; Rodrigues W; Pham BN; Thakor NV Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571 [TBL] [Abstract][Full Text] [Related]
17. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629 [TBL] [Abstract][Full Text] [Related]
18. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke. van Dokkum LEH; Ward T; Laffont I Ann Phys Rehabil Med; 2015 Feb; 58(1):3-8. PubMed ID: 25614021 [TBL] [Abstract][Full Text] [Related]
19. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065 [TBL] [Abstract][Full Text] [Related]
20. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]