These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36426679)

  • 1. Behaviour of the model antibody fluid constrained by rigid spherical obstacles: Effects of the obstacle-antibody attraction.
    Hvozd T; Kalyuzhnyi YV; Vlachy V
    Soft Matter; 2022 Dec; 18(47):9108-9117. PubMed ID: 36426679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation, liquid-liquid phase separation, and percolation behaviour of a model antibody fluid constrained by hard-sphere obstacles.
    Hvozd T; Kalyuzhnyi YV; Vlachy V
    Soft Matter; 2020 Sep; 16(36):8432-8443. PubMed ID: 32812624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory for the Liquid-Liquid Phase Separation in Aqueous Antibody Solutions.
    Kastelic M; Vlachy V
    J Phys Chem B; 2018 May; 122(21):5400-5408. PubMed ID: 29338267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the depletion effect caused by an addition of polymer to monoclonal antibody solutions.
    Kalyuzhnyi YV; Vlachy V
    J Phys Condens Matter; 2018 Dec; 30(48):485101. PubMed ID: 30418950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase behavior of patchy colloids confined in patchy porous media.
    Kalyuzhnyi YV; Patsahan T; Holovko M; Cummings PT
    Nanoscale; 2024 Feb; 16(9):4668-4677. PubMed ID: 38305436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media.
    Kalyuzhnyi YV; Holovko M; Patsahan T; Cummings PT
    J Phys Chem Lett; 2014 Dec; 5(24):4260-4. PubMed ID: 26273972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-Vapor Coexistence in the Screened Coulomb (Yukawa) Hard Sphere Binary Mixture in Disordered Porous Media: The Mean Spherical Approximation.
    Trokhymchuk A; Orozco GA; Pizio O; Vlachy V
    J Colloid Interface Sci; 1998 Nov; 207(2):379-385. PubMed ID: 9792783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations.
    Dear BJ; Bollinger JA; Chowdhury A; Hung JJ; Wilks LR; Karouta CA; Ramachandran K; Shay TY; Nieto MP; Sharma A; Cheung JK; Nykypanchuk D; Godfrin PD; Johnston KP; Truskett TM
    J Phys Chem B; 2019 Jun; 123(25):5274-5290. PubMed ID: 31146525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Equilibria of Polydisperse Square-Well Chain Fluid Confined in Random Porous Media: TPT of Wertheim and Scaled Particle Theory.
    Hvozd TV; Kalyuzhnyi YV; Cummings PT
    J Phys Chem B; 2018 May; 122(21):5458-5465. PubMed ID: 29656640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical endpoint and analytical phase diagram of attractive hard-core Yukawa spheres.
    Tuinier R; Fleer GJ
    J Phys Chem B; 2006 Oct; 110(41):20540-5. PubMed ID: 17034241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions.
    Gazzillo D; Pini D
    J Chem Phys; 2013 Oct; 139(16):164501. PubMed ID: 24182043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase coexistence in the hard-sphere Yukawa chain fluid with chain length polydispersity: dimer thermodynamic perturbation theory.
    Hlushak SP; Kalyuzhnyi YV
    J Chem Phys; 2008 Dec; 129(22):224901. PubMed ID: 19071943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering in Mixtures of SALR Particles and Hard Spheres with Cross Attraction.
    MunaĆ² G; Prestipino S; Bomont JM; Costa D
    J Phys Chem B; 2022 Mar; 126(9):2027-2039. PubMed ID: 35224968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.
    Holovko MF; Patsahan O; Patsahan T
    J Phys Condens Matter; 2016 Oct; 28(41):414003. PubMed ID: 27548356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percolation of colloids with distinct interaction sites.
    Tavares JM; Teixeira PI; Telo da Gama MM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010501. PubMed ID: 20365311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion.
    Lai SK; Wu KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041403. PubMed ID: 12443203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and dynamical arrest of attractive hard spheres.
    Babu S; Gimel JC; Nicolai T
    J Chem Phys; 2009 Feb; 130(6):064504. PubMed ID: 19222281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two- and three-phase equilibria of polydisperse Yukawa hard-sphere fluids confined in random porous media: high temperature approximation and scaled particle theory.
    Hvozd TV; Kalyuzhnyi YV
    Soft Matter; 2017 Feb; 13(7):1405-1412. PubMed ID: 28120982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor-liquid coexistence of fluids with attractive patches: An application of Wertheim's theory of association.
    Liu H; Kumar SK; Sciortino F; Evans GT
    J Chem Phys; 2009 Jan; 130(4):044902. PubMed ID: 19191408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic description of liquid-state limits.
    Woodcock LV
    J Phys Chem B; 2012 Mar; 116(12):3735-44. PubMed ID: 22423622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.