These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36426679)

  • 21. Adsorption of a Hard Sphere Fluid in a Disordered Polymerized Matrix: Application of the Replica Ornstein-Zernike Equations.
    Pizio O; Trokhymchuk A; Henderson D; Labik S
    J Colloid Interface Sci; 1997 Jul; 191(1):86-94. PubMed ID: 9241207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium self-assembly of colloids with distinct interaction sites: thermodynamics, percolation, and cluster distribution functions.
    Tavares JM; Teixeira PI; Telo da Gama MM; Sciortino F
    J Chem Phys; 2010 Jun; 132(23):234502. PubMed ID: 20572716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large attractive depletion interactions in soft repulsive-sphere binary mixtures.
    Cinacchi G; Martínez-Ratón Y; Mederos L; Navascués G; Tani A; Velasco E
    J Chem Phys; 2007 Dec; 127(21):214501. PubMed ID: 18067358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase behavior of the modified-Yukawa fluid and its sticky limit.
    Schöll-Paschinger E; Valadez-Pérez NE; Benavides AL; Castañeda-Priego R
    J Chem Phys; 2013 Nov; 139(18):184902. PubMed ID: 24320299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore: effect of attraction.
    Yu YX; Gao GH; Wang XL
    J Phys Chem B; 2006 Jul; 110(29):14418-25. PubMed ID: 16854151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase behavior and percolation in mixed patchy colloids.
    Zhu Y; Chapman WG
    J Chem Phys; 2021 Apr; 154(13):134901. PubMed ID: 33832229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid-gas critical point of a two-dimensional system of hard ellipses with attractive wells.
    Melnyk R; Kalyuzhnyi Y; Kahl G; Baumketner A
    J Chem Phys; 2022 Jan; 156(3):034102. PubMed ID: 35065576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the viscosities of antibody solutions through control of their binding sites.
    Kastelic M; Dill KA; Kalyuzhnyi YV; Vlachy V
    J Mol Liq; 2018 Nov; 270():234-242. PubMed ID: 30906093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres.
    Theiss M; van Westen T; Gross J
    J Chem Phys; 2019 Sep; 151(10):104102. PubMed ID: 31521101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-consistent Ornstein-Zernike approximation for the Yukawa fluid with improved direct correlation function.
    Reiner A; Høye JS
    J Chem Phys; 2008 Mar; 128(11):114507. PubMed ID: 18361591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Empty liquid state and re-entrant phase behavior of the patchy colloids confined in porous media.
    Hvozd TV; Kalyuzhnyi YV; Vlachy V; Cummings PT
    J Chem Phys; 2022 Apr; 156(16):161102. PubMed ID: 35490012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarse-grained modeling of the self-association of therapeutic monoclonal antibodies.
    Chaudhri A; Zarraga IE; Kamerzell TJ; Brandt JP; Patapoff TW; Shire SJ; Voth GA
    J Phys Chem B; 2012 Jul; 116(28):8045-57. PubMed ID: 22694284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.
    Shin H; Schweizer KS
    J Chem Phys; 2013 Feb; 138(8):084510. PubMed ID: 23464163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods.
    Jadrich R; Schweizer KS
    J Chem Phys; 2011 Dec; 135(23):234902. PubMed ID: 22191900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competition of percolation and phase separation in a fluid of adhesive hard spheres.
    Miller MA; Frenkel D
    Phys Rev Lett; 2003 Apr; 90(13):135702. PubMed ID: 12689308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions.
    Eberle AP; Castañeda-Priego R; Kim JM; Wagner NJ
    Langmuir; 2012 Jan; 28(3):1866-78. PubMed ID: 22148874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of surface roughness on the phase behavior of colloidal particles.
    Moinuddin M; Biswas P; Tripathy M
    J Chem Phys; 2020 Jan; 152(4):044902. PubMed ID: 32007055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity.
    Braz Teixeira R; de Las Heras D; Tavares JM; Telo da Gama MM
    J Chem Phys; 2021 Jul; 155(4):044903. PubMed ID: 34340383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cluster Percolation Causes Shear Thinning Behavior in Concentrated Solutions of Monoclonal Antibodies.
    Lanzaro A; Roche A; Sibanda N; Corbett D; Davis P; Shah M; Pathak JA; Uddin S; van der Walle CF; Yuan XF; Pluen A; Curtis R
    Mol Pharm; 2021 Jul; 18(7):2669-2682. PubMed ID: 34121411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.