BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36426838)

  • 1. Antisense oligonucleotide induced pseudoexon skipping and restoration of functional protein for Fukuyama muscular dystrophy caused by a deep-intronic variant.
    Enkhjargal S; Sugahara K; Khaledian B; Nagasaka M; Inagaki H; Kurahashi H; Koshimizu H; Toda T; Taniguchi-Ikeda M
    Hum Mol Genet; 2023 Apr; 32(8):1301-1312. PubMed ID: 36426838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy.
    Taniguchi-Ikeda M; Kobayashi K; Kanagawa M; Yu CC; Mori K; Oda T; Kuga A; Kurahashi H; Akman HO; DiMauro S; Kaji R; Yokota T; Takeda S; Toda T
    Nature; 2011 Oct; 478(7367):127-31. PubMed ID: 21979053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Current status and future prospects of research on Fukuyama muscular dystrophy].
    Toda T
    Nihon Rinsho; 2015 Aug; 73(8):1425-36. PubMed ID: 26281700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-intronic variant of fukutin is the most prevalent point mutation of Fukuyama congenital muscular dystrophy in Japan.
    Kobayashi K; Kato R; Kondo-Iida E; Taniguchi-Ikeda M; Osawa M; Saito K; Toda T
    J Hum Genet; 2017 Nov; 62(11):945-948. PubMed ID: 28680109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branchpoints as potential targets of exon-skipping therapies for genetic disorders.
    Ohara H; Hosokawa M; Awaya T; Hagiwara A; Kurosawa R; Sako Y; Ogawa M; Ogasawara M; Noguchi S; Goto Y; Takahashi R; Nishino I; Hagiwara M
    Mol Ther Nucleic Acids; 2023 Sep; 33():404-412. PubMed ID: 37547287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs.
    Blázquez L; Aiastui A; Goicoechea M; Martins de Araujo M; Avril A; Beley C; García L; Valcárcel J; Fortes P; López de Munain A
    Hum Mutat; 2013 Oct; 34(10):1387-95. PubMed ID: 23864287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Founder mutation causes classical Fukuyama congenital muscular dystrophy (FCMD) in Chinese patients.
    Yang H; Kobayashi K; Wang S; Jiao H; Xiao J; Toda T; Wu X; Xiong H
    Brain Dev; 2015 Oct; 37(9):880-6. PubMed ID: 25814170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of dysferlin deficiency to skeletal muscle pathology in asymptomatic and severe dystroglycanopathy models: generation of a new model for Fukuyama congenital muscular dystrophy.
    Kanagawa M; Lu Z; Ito C; Matsuda C; Miyake K; Toda T
    PLoS One; 2014; 9(9):e106721. PubMed ID: 25198651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype.
    Yis U; Uyanik G; Heck PB; Smitka M; Nobel H; Ebinger F; Dirik E; Feng L; Kurul SH; Brocke K; Unalp A; Özer E; Cakmakci H; Sewry C; Cirak S; Muntoni F; Hehr U; Morris-Rosendahl DJ
    Neuromuscul Disord; 2011 Jan; 21(1):20-30. PubMed ID: 20961758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fukuyama congenital muscular dystrophy and related alpha-dystroglycanopathies].
    Murakami T; Nishino I
    Brain Nerve; 2008 Oct; 60(10):1159-64. PubMed ID: 18975603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. National registry of patients with Fukuyama congenital muscular dystrophy in Japan.
    Ishigaki K; Ihara C; Nakamura H; Mori-Yoshimura M; Maruo K; Taniguchi-Ikeda M; Kimura E; Murakami T; Sato T; Toda T; Kaiya H; Osawa M
    Neuromuscul Disord; 2018 Oct; 28(10):885-893. PubMed ID: 30220444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Portuguese case of Fukuyama congenital muscular dystrophy caused by a multi-exonic duplication in the fukutin gene.
    Costa C; Oliveira J; Gonçalves A; Santos R; Bronze-da-Rocha E; Rebelo O; Pais RP; Fineza I
    Neuromuscul Disord; 2013 Jul; 23(7):557-61. PubMed ID: 23582336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in Korea.
    Lim BC; Ki CS; Kim JW; Cho A; Kim MJ; Hwang H; Kim KJ; Hwang YS; Park WY; Lim YJ; Kim IO; Lee JS; Chae JH
    Neuromuscul Disord; 2010 Aug; 20(8):524-30. PubMed ID: 20620061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mislocalization of fukutin protein by disease-causing missense mutations can be rescued with treatments directed at folding amelioration.
    Tachikawa M; Kanagawa M; Yu CC; Kobayashi K; Toda T
    J Biol Chem; 2012 Mar; 287(11):8398-406. PubMed ID: 22275357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation.
    Dominov JA; Uyan Ö; McKenna-Yasek D; Nallamilli BRR; Kergourlay V; Bartoli M; Levy N; Hudson J; Evangelista T; Lochmuller H; Krahn M; Rufibach L; Hegde M; Brown RH
    Ann Clin Transl Neurol; 2019 Apr; 6(4):642-654. PubMed ID: 31019989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.
    Martínez-Pizarro A; Leal F; Holm LL; Doktor TK; Petersen USS; Bueno M; Thöny B; Pérez B; Andresen BS; Desviat LR
    Nucleic Acid Ther; 2022 Oct; 32(5):378-390. PubMed ID: 35833796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exon-Skipping for a Pathogenic COL6A1 Variant in Ullrich Congenital Muscular Dystrophy.
    Aguti S; Guirguis F; Bönnemann C; Muntoni F; Bolduc V; Zhou H
    Methods Mol Biol; 2023; 2587():387-407. PubMed ID: 36401040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.