These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36426874)

  • 1. Biomechanical comparison of proximal, distal, and anatomic tibial tunnel for transtibial posterior cruciate ligament reconstruction.
    Teng Y; Jia G; Lu F; Da L; Teng F; Zhao L; Geng B; Yun X; Han H; Xia Y
    Proc Inst Mech Eng H; 2023 Jan; 237(1):104-112. PubMed ID: 36426874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Comparison of Anatomic Versus Lower of Anteromedial and Anterolateral Tibial Tunnels in Posterior Cruciate Ligament Reconstruction.
    Peng B; Tang Y; Jia G; Geng B; Xu L; Xia Y; Teng Y
    Orthop Surg; 2023 Mar; 15(3):851-857. PubMed ID: 36597708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximal, Distal, and Combined Fixation Within the Tibial Tunnel in Transtibial Posterior Cruciate Ligament Reconstruction: A Time-Zero Biomechanical Study In Vitro.
    Zhang X; Teng Y; Li R; Ma C; Yang X; Wang H; Han H; Jiang J; Geng B; Wu M; Xia Y
    Arthroscopy; 2019 Jun; 35(6):1667-1673. PubMed ID: 31072718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tibial tunnel drilling angles of 60° provided a lower ultimate load to failure on a single bundle posterior cruciate ligament graft using interference screw fixation compared to 30°/45°.
    Zhang X; Teng F; Geng B; Lu F; Liu Z; Guo L; Han H; Wu M; Xia Y; Teng Y
    Knee Surg Sports Traumatol Arthrosc; 2023 Sep; 31(9):4035-4042. PubMed ID: 37191693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surgically adjust tibial tunnel in anatomical anterior cruciate ligament single-bundle reconstruction: A time-zero biomechanical study in vitro.
    Wang H; Teng Y; Peng B; Jia G; Han H; Xia Y
    J Orthop Surg (Hong Kong); 2023; 31(1):10225536221151131. PubMed ID: 36688346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of a novel transtibial posterior cruciate ligament reconstruction using high-strength sutures in a porcine bone model.
    Duan MY; Sun R; Zhuang LT; Zhang HZ
    Chin Med J (Engl); 2021 Sep; 134(19):2316-2321. PubMed ID: 34629417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of tibial inlay and tibial tunnel techniques for reconstruction of the posterior cruciate ligament. Analysis of graft forces.
    Oakes DA; Markolf KL; McWilliams J; Young CR; McAllister DR
    J Bone Joint Surg Am; 2002 Jun; 84(6):938-44. PubMed ID: 12063327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Role Does Low Bone Mineral Density Play in the "Killer Turn" Effect after Transtibial Posterior Cruciate Ligament Reconstruction?
    Li Y; Chen XZ; Zhang J; Song GY; Li X; Feng H
    Orthop Surg; 2016 Nov; 8(4):483-489. PubMed ID: 28032708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonanatomic Tibial Tunnel Placement for Single-Bundle Posterior Cruciate Ligament Reconstruction Leads to Greater Posterior Tibial Translation in a Biomechanical Model.
    Okoroafor UC; Saint-Preux F; Gill SW; Bledsoe G; Kaar SG
    Arthroscopy; 2016 Jul; 32(7):1354-8. PubMed ID: 27032605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified tibial tunnel placement for single-bundle posterior cruciate ligament reconstruction reduces the "Killer Turn" in a biomechanical model.
    Wang Z; Xiong Y; Chen G; Tang X; Li Q; Zhang Z; Shang X; Yang Y; Sulaiman Y; Li J
    Medicine (Baltimore); 2019 Dec; 98(52):e18439. PubMed ID: 31876724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces.
    Margheritini F; Mauro CS; Rihn JA; Stabile KJ; Woo SL; Harner CD
    Am J Sports Med; 2004; 32(3):587-93. PubMed ID: 15090372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of tibial tunnel reaming on the meniscal roots during cruciate ligament reconstruction in a cadaveric model, Part 2: The posterior cruciate ligament.
    LaPrade CM; Smith SD; Rasmussen MT; Hamming MG; Wijdicks CA; Engebretsen L; Feagin JA; LaPrade RF
    Am J Sports Med; 2015 Jan; 43(1):207-12. PubMed ID: 25361857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tibial Slope and Its Effect on Graft Force in Posterior Cruciate Ligament Reconstructions.
    Bernhardson AS; Aman ZS; DePhillipo NN; Dornan GJ; Storaci HW; Brady AW; Nakama G; LaPrade RF
    Am J Sports Med; 2019 Apr; 47(5):1168-1174. PubMed ID: 30896980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography.
    Kopf S; Forsythe B; Wong AK; Tashman S; Anderst W; Irrgang JJ; Fu FH
    J Bone Joint Surg Am; 2010 Jun; 92(6):1427-31. PubMed ID: 20516318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical characteristics of arthroscopic tibial inlay techniques for posterior cruciate ligament reconstruction: in vitro comparison of tibial graft tunnel placement.
    Benedetto KP; Hoffelner T; Osti M
    Int Orthop; 2014 Nov; 38(11):2363-8. PubMed ID: 25042695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic loading of posterior cruciate ligament replacements fixed with tibial tunnel and tibial inlay methods.
    Markolf KL; Zemanovic JR; McAllister DR
    J Bone Joint Surg Am; 2002 Apr; 84(4):518-24. PubMed ID: 11940609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the fixation strengths provided by different intraosseous tendon lengths during anterior cruciate ligament reconstruction: a biomechanical study in a porcine tibial model.
    Yang DL; Cheon SH; Oh CW; Kyung HS
    Clin Orthop Surg; 2014 Jun; 6(2):173-9. PubMed ID: 24900898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the theoretical optimal angle of the tibial tunnel in transtibial anatomic posterior cruciate ligament reconstruction by computed tomography.
    Zhang X; Teng Y; Yang X; Li R; Ma C; Wang H; Han H; Geng B; Xia Y
    BMC Musculoskelet Disord; 2018 Dec; 19(1):436. PubMed ID: 30522472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Different Tibial Fixation Techniques on Initial Stability in Single-Stage Anterior Cruciate Ligament Revision With Confluent Tibial Tunnels: A Biomechanical Laboratory Study.
    Schliemann B; Treder M; Schulze M; Müller V; Vasta S; Zampogna B; Herbort M; Kösters C; Raschke MJ; Lenschow S
    Arthroscopy; 2016 Jan; 32(1):78-89. PubMed ID: 26372523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Permissive Safe Angle of the Tibial Tunnel in Transtibial Posterior Cruciate Ligament Reconstruction: A Three-Dimensional Simulation Study.
    Teng Y; Jia G; Da L; Peng B; Liu Z; Han H; Wu M; Xia Y
    Orthop Surg; 2022 Jun; 14(6):1193-1202. PubMed ID: 35478490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.