BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36426905)

  • 1. Highly Efficient CRISPR/Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells.
    Maguire JA; Gadue P; French DL
    Curr Protoc; 2022 Nov; 2(11):e590. PubMed ID: 36426905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells.
    Maguire JA; Cardenas-Diaz FL; Gadue P; French DL
    Curr Protoc Stem Cell Biol; 2019 Feb; 48(1):e64. PubMed ID: 30358158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating CRISPR-Cas9-Mediated Null Mutations and Screening Targeting Efficiency in Human Pluripotent Stem Cells.
    Bower OJ; McCarthy A; Lea RA; Alanis-Lobato G; Zohren J; Gerri C; Turner JMA; Niakan KK
    Curr Protoc; 2021 Aug; 1(8):e232. PubMed ID: 34432381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Defined Genomic Modifications Using CRISPR-CAS9 in Human Pluripotent Stem Cells.
    Cardenas-Diaz FL; Maguire JA; Gadue P; French DL
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells.
    Gupta N; Susa K; Yoda Y; Bonventre JV; Valerius MT; Morizane R
    Curr Protoc Stem Cell Biol; 2018 May; 45(1):e50. PubMed ID: 30040245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient generation of isogenic pluripotent stem cell models using prime editing.
    Li H; Busquets O; Verma Y; Syed KM; Kutnowski N; Pangilinan GR; Gilbert LA; Bateup HS; Rio DC; Hockemeyer D; Soldner F
    Elife; 2022 Sep; 11():. PubMed ID: 36069759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
    Ihry RJ; Worringer KA; Salick MR; Frias E; Ho D; Theriault K; Kommineni S; Chen J; Sondey M; Ye C; Randhawa R; Kulkarni T; Yang Z; McAllister G; Russ C; Reece-Hoyes J; Forrester W; Hoffman GR; Dolmetsch R; Kaykas A
    Nat Med; 2018 Jul; 24(7):939-946. PubMed ID: 29892062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3.
    Hou Z; Hu C; Ke A; Zhang Y
    Curr Protoc; 2022 Feb; 2(2):e361. PubMed ID: 35129865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Cas9-based Genome Editing Using CRISPR Analysis Webtools in Severe Early-onset-obesity Patient-derived iPSCs.
    Patel A; Iannello G; Diaz AG; Sirabella D; Thaker V; Corneo B
    Curr Protoc; 2022 Aug; 2(8):e519. PubMed ID: 35950852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination.
    Martin RM; Ikeda K; Cromer MK; Uchida N; Nishimura T; Romano R; Tong AJ; Lemgart VT; Camarena J; Pavel-Dinu M; Sindhu C; Wiebking V; Vaidyanathan S; Dever DP; Bak RO; Laustsen A; Lesch BJ; Jakobsen MR; Sebastiano V; Nakauchi H; Porteus MH
    Cell Stem Cell; 2019 May; 24(5):821-828.e5. PubMed ID: 31051134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells.
    Brandão KO; Grandela C; Yiangou L; Mummery CL; Davis RP
    Methods Mol Biol; 2022; 2454():531-557. PubMed ID: 33755904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E; Eggan K; Merkle FT
    Curr Protoc Stem Cell Biol; 2016 Aug; 38():5B.6.1-5B.6.60. PubMed ID: 27532820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Genome Editing in the Moss Physcomitrium (Formerly Physcomitrella) patens.
    Wu SZ; Ryken SE; Bezanilla M
    Curr Protoc; 2023 Apr; 3(4):e725. PubMed ID: 37021953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.
    González F
    Dev Dyn; 2016 Jul; 245(7):788-806. PubMed ID: 27145095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing Gene Editing Efficiency for CRISPR-Cas9 by Small RNAs in Pluripotent Stem Cells.
    Shahryari A; Moya N; Siehler J; Wang X; Burtscher I; Lickert H
    CRISPR J; 2021 Aug; 4(4):491-501. PubMed ID: 34406042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of homology directed repair of CRISPR-Cas9 induced double strand breaks are lower in naïve compared to primed human pluripotent stem cells.
    Dodsworth BT; Hatje K; Meyer CA; Flynn R; Cowley SA
    Stem Cell Res; 2020 Jul; 46():101852. PubMed ID: 32521498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Derivation of Multi-Reporter Pluripotent Stem Cell Lines via CRISPR/Cas9n-Mediated Homology-Directed Repair.
    Dettmer R; Naujok O
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e116. PubMed ID: 32628328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust genome editing via modRNA-based Cas9 or base editor in human pluripotent stem cells.
    Haideri T; Howells A; Jiang Y; Yang J; Bao X; Lian XL
    Cell Rep Methods; 2022 Sep; 2(9):100290. PubMed ID: 36160051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells.
    Lotfi M; Morshedi Rad D; Mashhadi SS; Ashouri A; Mojarrad M; Mozaffari-Jovin S; Farrokhi S; Hashemi M; Lotfi M; Ebrahimi Warkiani M; Abbaszadegan MR
    Stem Cell Rev Rep; 2023 Nov; 19(8):2576-2596. PubMed ID: 37723364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology.
    Mianné J; Bourguignon C; Nguyen Van C; Fieldès M; Nasri A; Assou S; De Vos J
    Cells; 2020 May; 9(5):. PubMed ID: 32466123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.