These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36427156)
41. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963 [TBL] [Abstract][Full Text] [Related]
42. Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites. Aday AW; Zhu LJ; Lakshmanan A; Wang J; Lawson ND Dev Biol; 2011 Sep; 357(2):450-62. PubMed ID: 21435340 [TBL] [Abstract][Full Text] [Related]
43. Assay for Transposase-Accessible Chromatin-Sequencing Using Bright AR; Veenstra GJC Cold Spring Harb Protoc; 2019 Jan; 2019(1):. PubMed ID: 30042136 [TBL] [Abstract][Full Text] [Related]
44. Assay for Transposase Accessible Chromatin (ATAC-Seq) to Chart the Open Chromatin Landscape of Human Pancreatic Islets. Raurell-Vila H; Ramos-Rodríguez M; Pasquali L Methods Mol Biol; 2018; 1766():197-208. PubMed ID: 29605854 [TBL] [Abstract][Full Text] [Related]
45. Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. López-Pérez AR; Balwierz PJ; Lenhard B; Muller F; Wardle FC; Manfroid I; Voz ML; Peers B Sci Rep; 2021 Nov; 11(1):22717. PubMed ID: 34811400 [TBL] [Abstract][Full Text] [Related]
46. Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity. Lowe EK; Cuomo C; Voronov D; Arnone MI Methods Cell Biol; 2019; 151():115-126. PubMed ID: 30948003 [TBL] [Abstract][Full Text] [Related]
47. ATAC-pipe: general analysis of genome-wide chromatin accessibility. Zuo Z; Jin Y; Zhang W; Lu Y; Li B; Qu K Brief Bioinform; 2019 Sep; 20(5):1934-1943. PubMed ID: 29982337 [TBL] [Abstract][Full Text] [Related]
48. Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology. Li W; Tim Wu U; Cheng Y; Huang Y; Mao L; Sun M; Qiu C; Zhou L; Gao L Genet Res (Camb); 2022; 2022():8429207. PubMed ID: 36062065 [TBL] [Abstract][Full Text] [Related]
49. Regulatory chromatin landscape in Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O Plant Methods; 2018; 14():113. PubMed ID: 30598689 [TBL] [Abstract][Full Text] [Related]
50. Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq. Massarat AR; Sen A; Jaureguy J; Tyndale ST; Fu Y; Erikson G; McVicker G Nucleic Acids Res; 2021 Aug; 49(14):7986-7994. PubMed ID: 34313779 [TBL] [Abstract][Full Text] [Related]
51. Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction. Inoue F; Kreimer A; Ashuach T; Ahituv N; Yosef N Cell Stem Cell; 2019 Nov; 25(5):713-727.e10. PubMed ID: 31631012 [TBL] [Abstract][Full Text] [Related]
52. Protocol for assay of transposase accessible chromatin sequencing in non-model species. Kissane S; Dhandapani V; Orsini L STAR Protoc; 2021 Mar; 2(1):100341. PubMed ID: 33659905 [TBL] [Abstract][Full Text] [Related]
53. Isolation of Plant Nuclei Compatible with Microfluidic Single-nucleus ATAC-sequencing. Thibivilliers SB; Anderson DK; Libault MY Bio Protoc; 2021 Dec; 11(23):e4240. PubMed ID: 35005085 [TBL] [Abstract][Full Text] [Related]
54. Systematic alteration of ATAC-seq for profiling open chromatin in cryopreserved nuclei preparations from livestock tissues. Halstead MM; Kern C; Saelao P; Chanthavixay G; Wang Y; Delany ME; Zhou H; Ross PJ Sci Rep; 2020 Mar; 10(1):5230. PubMed ID: 32251359 [TBL] [Abstract][Full Text] [Related]
55. Mapping open chromatin by ATAC-seq in bread wheat. Wang X; Chen C; He C; Chen D; Yan W Front Plant Sci; 2022; 13():1074873. PubMed ID: 36466281 [TBL] [Abstract][Full Text] [Related]
56. Bibliometric review of ATAC-Seq and its application in gene expression. Luo L; Gribskov M; Wang S Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35255493 [TBL] [Abstract][Full Text] [Related]
57. The landscape of accessible chromatin in bovine oocytes and early embryos. Ming H; Sun J; Pasquariello R; Gatenby L; Herrick JR; Yuan Y; Pinto CR; Bondioli KR; Krisher RL; Jiang Z Epigenetics; 2021 Mar; 16(3):300-312. PubMed ID: 32663104 [TBL] [Abstract][Full Text] [Related]
58. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation. Reske JJ; Wilson MR; Chandler RL Epigenetics Chromatin; 2020 Apr; 13(1):22. PubMed ID: 32321567 [TBL] [Abstract][Full Text] [Related]
59. Extensive evaluation of ATAC-seq protocols for native or formaldehyde-fixed nuclei. Zhang H; Rice ME; Alvin JW; Farrera-Gaffney D; Galligan JJ; Johnson MDL; Cusanovich DA BMC Genomics; 2022 Mar; 23(1):214. PubMed ID: 35296236 [TBL] [Abstract][Full Text] [Related]
60. Dissociation of chick embryonic tissue for FACS and preparation of isolated cells for genome-wide downstream assays. Williams RM; Sauka-Spengler T STAR Protoc; 2021 Jun; 2(2):100414. PubMed ID: 33870222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]