These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36427207)

  • 1. Precisely Constructed Metal Sulfides with Localized Single-Atom Rhodium for Photocatalytic C-H Activation and Direct Methanol Coupling to Ethylene Glycol.
    Wang L; Sun Y; Zhang F; Hu J; Hu W; Xie S; Wang Y; Feng J; Li Y; Wang G; Zhang B; Wang H; Zhang Q; Wang Y
    Adv Mater; 2023 Feb; 35(5):e2205782. PubMed ID: 36427207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research progress in metal sulfides for photocatalysis: From activity to stability.
    Zhang S; Ou X; Xiang Q; Carabineiro SAC; Fan J; Lv K
    Chemosphere; 2022 Sep; 303(Pt 2):135085. PubMed ID: 35618060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light-driven C-H activation and C-C coupling of methanol into ethylene glycol.
    Xie S; Shen Z; Deng J; Guo P; Zhang Q; Zhang H; Ma C; Jiang Z; Cheng J; Deng D; Wang Y
    Nat Commun; 2018 Mar; 9(1):1181. PubMed ID: 29563511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity.
    Zhou P; Luo M; Guo S
    Nat Rev Chem; 2022 Nov; 6(11):823-838. PubMed ID: 37118099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Sulfide Based Heterojunctions as Photocatalysts for Dyes Photodegradation.
    Isac L; Cazan C; Enesca A; Andronic L
    Front Chem; 2019; 7():694. PubMed ID: 31709227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production.
    Jiang D; Irfan RM; Sun Z; Lu D; Du P
    ChemSusChem; 2016 Nov; 9(21):3084-3092. PubMed ID: 27730758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ phase transformation of polytypic zinc-blende/wurtzite copper indium sulfide via a facile polyol method to boost visible-light photocatalytic performance.
    Lee JT; Huang YE; Su EC; Wey MY
    Chemosphere; 2021 Aug; 277():130348. PubMed ID: 33784556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Sulfide Photocatalysts for Lignocellulose Valorization.
    Wu X; Xie S; Zhang H; Zhang Q; Sels BF; Wang Y
    Adv Mater; 2021 Dec; 33(50):e2007129. PubMed ID: 34117812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.
    Reza Gholipour M; Dinh CT; Béland F; Do TO
    Nanoscale; 2015 May; 7(18):8187-208. PubMed ID: 25804291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches.
    Hsu YY; Suen NT; Chang CC; Hung SF; Chen CL; Chan TS; Dong CL; Chan CC; Chen SY; Chen HM
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22558-69. PubMed ID: 26402651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn
    Zhao H; Li CF; Yong X; Kumar P; Palma B; Hu ZY; Van Tendeloo G; Siahrostami S; Larter S; Zheng D; Wang S; Chen Z; Kibria MG; Hu J
    iScience; 2021 Feb; 24(2):102109. PubMed ID: 33615204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Charge Transport in Carbon Nitride Modulated by Interfacial Chemical Bond and Homophase Junction to Boost Photocatalytic Hydrogen Production.
    Zhang J; Luo D; Chen X; Luo S; Yin J; Shi M; Li R; Ye S
    Chemistry; 2022 Nov; 28(66):e202202007. PubMed ID: 36163587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alloyed (ZnS)x(CuInS2)(1-x) semiconductor nanorods: synthesis, bandgap tuning and photocatalytic properties.
    Ye C; Regulacio MD; Lim SH; Xu QH; Han MY
    Chemistry; 2012 Sep; 18(36):11258-63. PubMed ID: 22865784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.