BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 36427310)

  • 1. Hydrogel-guided strategies to stimulate an effective immune response for vaccine-based cancer immunotherapy.
    Lei L; Huang D; Gao H; He B; Cao J; Peppas NA
    Sci Adv; 2022 Nov; 8(47):eadc8738. PubMed ID: 36427310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy.
    Yang A; Bai Y; Dong X; Ma T; Zhu D; Mei L; Lv F
    Acta Biomater; 2021 Oct; 133():257-267. PubMed ID: 34407475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Cancer Vaccine Research.
    Liu N; Xiao X; Zhang Z; Mao C; Wan M; Shen J
    ACS Biomater Sci Eng; 2023 Nov; 9(11):5999-6023. PubMed ID: 37921277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment.
    Huo W; Yang X; Wang B; Cao L; Fang Z; Li Z; Liu H; Liang XJ; Zhang J; Jin Y
    Biomaterials; 2022 Sep; 288():121722. PubMed ID: 35963815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicines for an Enhanced Immunogenic Cell Death-Based
    Zhao C; Wang C; Shan W; Wang Z; Chen X; Deng H
    Acc Chem Res; 2024 Mar; 57(6):905-918. PubMed ID: 38417027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic Vaccines for Cancer Immunotherapy.
    Wang J; Mamuti M; Wang H
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6036-6052. PubMed ID: 33449675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming Injectable DNA Hydrogels Yields Tumor Microenvironment-Activatable and Immune-Instructive Depots for Augmented Chemo-Immunotherapy.
    Fan Y; Zhan M; Liang J; Yang X; Zhang B; Shi X; Hu Y
    Adv Sci (Weinh); 2023 Oct; 10(29):e2302119. PubMed ID: 37541435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy.
    Song H; Yang P; Huang P; Zhang C; Kong D; Wang W
    Theranostics; 2019; 9(8):2299-2314. PubMed ID: 31149045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccine-like nanomedicine for cancer immunotherapy.
    Yi Y; Yu M; Li W; Zhu D; Mei L; Ou M
    J Control Release; 2023 Mar; 355():760-778. PubMed ID: 36822241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy.
    Tiptiri-Kourpeti A; Spyridopoulou K; Pappa A; Chlichlia K
    Pharmacol Ther; 2016 Sep; 165():32-49. PubMed ID: 27235391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response.
    Wang QT; Liu YX; Wang J; Wang H
    ChemMedChem; 2023 Jul; 18(13):e202200673. PubMed ID: 37088719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma.
    Duong HTT; Thambi T; Yin Y; Kim SH; Nguyen TL; Phan VHG; Kim J; Jeong JH; Lee DS
    Biomaterials; 2020 Feb; 230():119599. PubMed ID: 31718883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Microenvironment-Activated Hydrogel Platform with Programmed Release Property Evokes a Cascade-Amplified Immune Response against Tumor Growth, Metastasis and Recurrence.
    Gong S; Liang X; Zhang M; Li L; He T; Yuan Y; Li X; Liu F; Yang X; Shen M; Wu Q; Gong C
    Small; 2022 Dec; 18(50):e2107061. PubMed ID: 36323618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current challenges for cancer vaccine adjuvant development.
    Bowen WS; Svrivastava AK; Batra L; Barsoumian H; Shirwan H
    Expert Rev Vaccines; 2018 Mar; 17(3):207-215. PubMed ID: 29372660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-guided intratumoral immunotherapy: Developing a clinically practical technology.
    Som A; Rosenboom JG; Chandler A; Sheth RA; Wehrenberg-Klee E
    Adv Drug Deliv Rev; 2022 Oct; 189():114505. PubMed ID: 36007674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Strategies to Boost Cancer Vaccines.
    Li WH; Li YM
    Chem Rev; 2020 Oct; 120(20):11420-11478. PubMed ID: 32914967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines.
    Butt AQ; Mills KH
    Oncogene; 2014 Sep; 33(38):4623-31. PubMed ID: 24141774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of adjuvants for immunotherapy.
    Circelli L; Tornesello M; Buonaguro FM; Buonaguro L
    Hum Vaccin Immunother; 2017 Aug; 13(8):1774-1777. PubMed ID: 28604160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors.
    Huang D; Wu T; Lan S; Liu C; Guo Z; Zhang W
    Biomaterials; 2022 Oct; 289():121808. PubMed ID: 36137415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.