BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36427459)

  • 1. Checkpoint Nano-PROTACs for Activatable Cancer Photo-Immunotherapy.
    Zhang C; Xu M; He S; Huang J; Xu C; Pu K
    Adv Mater; 2023 Feb; 35(6):e2208553. PubMed ID: 36427459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Nano-PROTACs Reprogram Tumor Microenvironment for Activatable Photo-metabolic Cancer Immunotherapy.
    Zhang C; He S; Zeng Z; Cheng P; Pu K
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202114957. PubMed ID: 34927316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy.
    Zhang C; Zeng Z; Cui D; He S; Jiang Y; Li J; Huang J; Pu K
    Nat Commun; 2021 May; 12(1):2934. PubMed ID: 34006860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy.
    Choi J; Park B; Park JY; Shin D; Lee S; Yoon HY; Kim K; Kim SH; Kim Y; Yang Y; Shim MK
    Adv Mater; 2024 Jun; ():e2405475. PubMed ID: 38898702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression.
    Wang K; Dai X; Yu A; Feng C; Liu K; Huang L
    J Exp Clin Cancer Res; 2022 Sep; 41(1):289. PubMed ID: 36171633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a SHP2 Degrader with In Vivo Anti-Tumor Activity.
    Miao J; Bai Y; Miao Y; Qu Z; Dong J; Zhang RY; Aggarwal D; Jassim BA; Nguyen Q; Zhang ZY
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROTACs: Novel tools for improving immunotherapy in cancer.
    Li S; Chen T; Liu J; Zhang H; Li J; Wang Z; Shang G
    Cancer Lett; 2023 Apr; 560():216128. PubMed ID: 36933781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared-Activatable PROTAC Nanocages for Controllable Target Protein Degradation and On-Demand Antitumor Therapy.
    He Q; Zhou L; Yu D; Zhu R; Chen Y; Song M; Liu X; Liao Y; Ding T; Fan W; Yu W
    J Med Chem; 2023 Aug; 66(15):10458-10472. PubMed ID: 37279091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity.
    Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Polymeric Extracellular Matrix Nanoremodeler for Activatable Cancer Photo-Immunotherapy.
    Zhang C; Xu M; Zeng Z; Wei X; He S; Huang J; Pu K
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202217339. PubMed ID: 36694443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis-targeting chimera molecules targeting SHP2.
    Yu D; Zheng M; Liu Y; Chen L; Li H
    Future Med Chem; 2022 Apr; 14(8):587-600. PubMed ID: 35297283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.
    Li X; Pu W; Zheng Q; Ai M; Chen S; Peng Y
    Mol Cancer; 2022 Apr; 21(1):99. PubMed ID: 35410300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy.
    Wang F; Dong G; Ding M; Yu N; Sheng C; Li J
    Small; 2024 Feb; 20(8):e2306378. PubMed ID: 37817359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells.
    Shi YY; Wang AJ; Liu XL; Dai MY; Cai HB
    Front Immunol; 2023; 14():1193222. PubMed ID: 37325638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Pronged Attack: pH-Driven Membrane-Anchored NIR Dual-Type Nano-Photosensitizer Excites Immunogenic Pyroptosis and Sequester Immune Checkpoint for Enhanced Prostate Cancer Photo-Immunotherapy.
    Wang H; He Z; Gao Y; Feng D; Wei X; Huang Y; Hou J; Li S; Zhang W
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302422. PubMed ID: 37544896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotherapy-Enabled Colorectal Cancer Immunotherapy of Self-Delivery Nano-PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance.
    Zhao LP; Zheng RR; Rao XN; Huang CY; Zhou HY; Yu XY; Jiang XY; Li SY
    Adv Sci (Weinh); 2024 Apr; 11(15):e2309204. PubMed ID: 38239040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic combination of targeted nano-nuclear-reactors and anti-PD-L1 nanobodies evokes persistent T cell immune activation for cancer immunotherapy.
    Zhu L; Li J; Guo Z; Kwok HF; Zhao Q
    J Nanobiotechnology; 2022 Dec; 20(1):521. PubMed ID: 36496381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.