These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36427632)

  • 1. A new fluorescence-based methodology for studying bioaerosol scavenging processes using a hyperspectral LIF-LIDAR remote sensing system.
    Shoshanim O; Baratz A
    Environ Res; 2023 Jan; 217():114859. PubMed ID: 36427632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique.
    Richardson SC; Mytilinaios M; Foskinis R; Kyrou C; Papayannis A; Pyrri I; Giannoutsou E; Adamakis IDS
    Sci Total Environ; 2019 Dec; 696():133906. PubMed ID: 31442725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring.
    Saito Y; Kawai K
    Opt Express; 2022 May; 30(11):19922-19929. PubMed ID: 36221755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China.
    Wang Y; Huang Z; Zhou T; Bi J; Shi J
    Opt Express; 2023 Jun; 31(13):22157-22169. PubMed ID: 37381296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active 3D Imaging of Vegetation based on Multi-Wavelength Fluorescence LiDAR.
    Zhao X; Shi S; Yang J; Gong W; Sun J; Chen B; Guo K; Chen B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shipborne single-photon fluorescence oceanic lidar: instrumentation and inversion.
    Shangguan M; Guo Y; Liao Z
    Opt Express; 2024 Mar; 32(6):10204-10218. PubMed ID: 38571237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel mobile fluorescence lidar system for detection of tryptophan.
    Chen S; Chen Y; Zhang Y; Guo P; Wu H; Li X; Chen H
    Appl Opt; 2020 Jan; 59(3):607-613. PubMed ID: 32225184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Night-time ground hyperspectral imaging for urban-scale remote sensing of ambient PM--modal concentrations retrieval.
    Etzion Y; Kolatt T; Shoshany M; Broday DM
    Environ Sci Technol; 2014; 48(3):1787-94. PubMed ID: 24404989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.
    Artaxo P; Rizzo LV; Brito JF; Barbosa HM; Arana A; Sena ET; Cirino GG; Bastos W; Martin ST; Andreae MO
    Faraday Discuss; 2013; 165():203-35. PubMed ID: 24601004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Remote Sensing of Lake Kinneret by Compact Fluorescence LiDAR.
    Pershin SM; Katsnelson BG; Grishin MY; Lednev VN; Zavozin VA; Ostrovsky I
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System.
    Seo H; Jeong YS; Bae J; Choi K; Seo MH
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38248404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens.
    Otero Fernandez M; Thomas RJ; Oswin H; Haddrell AE; Reid JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing residential indoor and outdoor bioaerosol characteristics using the ultraviolet light-induced fluorescence-based wideband integrated bioaerosol sensor.
    Addor YS; Baumgardner D; Hughes D; Newman N; Jandarov R; Reponen T
    Environ Sci Process Impacts; 2022 Oct; 24(10):1790-1804. PubMed ID: 36056699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer.
    Ma Y; Wang Z; Yang D; Diao Y; Wang W; Zhang H; Zhu W; Zheng J
    Sci Total Environ; 2019 Mar; 656():447-457. PubMed ID: 30522027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols.
    Roy G; Roy N
    Appl Opt; 2008 Mar; 47(9):1336-49. PubMed ID: 18709082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.