These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36427699)

  • 1. CRISPR/Cas9 genome editing demonstrates functionality of the autoimmunity-associated SNP rs12946510.
    Ustiugova AS; Ekaterina DM; Nataliya MV; Alexey DA; Dmitry KV; Marina AA
    Biochim Biophys Acta Mol Basis Dis; 2023 Feb; 1869(2):166599. PubMed ID: 36427699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing.
    Wang X; Hayes JE; Xu X; Gao X; Mehta D; Lilja HG; Klein RJ
    Gene; 2021 Feb; 768():145265. PubMed ID: 33122083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression levels of
    Stefanović M; Stojković L; Životić I; Dinčić E; Stanković A; Živković M
    Heliyon; 2024 Feb; 10(3):e25033. PubMed ID: 38314276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.
    Smith AJP; Deloukas P; Munroe PB
    Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Noncoding Polymorphism rs6832151 Is an Attractive Candidate for Genome Editing Aimed at Finding New Molecular Mechanisms of Autoimmune Diseases].
    Ustiugova AS; Afanasyeva MA
    Mol Biol (Mosk); 2020; 54(5):826-836. PubMed ID: 33009792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.).
    Li G; Zhou Z; Liang L; Song Z; Hu Y; Cui J; Chen W; Hu K; Cheng J
    PLoS One; 2020; 15(12):e0244515. PubMed ID: 33373406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
    Zhang Y; Karakikes I
    Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrigendum to "CRISPR/Cas9 genome editing demonstrates functionality of the autoimmunity-associated SNP rs12946510" [Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1869 (2023) 166599].
    Ustiugova AS; Dvorianinova EM; Melnikova NV; Dmitriev AA; Kuprash DV; Afanasyeva MA
    Biochim Biophys Acta Mol Basis Dis; 2023 Apr; 1869(4):166649. PubMed ID: 36706683
    [No Abstract]   [Full Text] [Related]  

  • 11. Genome editing for the reproduction and remedy of human diseases in mice.
    Hara S; Takada S
    J Hum Genet; 2018 Feb; 63(2):107-113. PubMed ID: 29180644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.
    Coggins NB; Stultz J; O'Geen H; Carvajal-Carmona LG; Segal DJ
    Sci Rep; 2017 Nov; 7(1):15044. PubMed ID: 29118424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient CRISPR/Cas9 Disruption of Autoimmune-Associated Genes Reveals Key Signaling Programs in Primary Human T Cells.
    Anderson W; Thorpe J; Long SA; Rawlings DJ
    J Immunol; 2019 Dec; 203(12):3166-3178. PubMed ID: 31722988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.
    Wang SW; Gao C; Zheng YM; Yi L; Lu JC; Huang XY; Cai JB; Zhang PF; Cui YH; Ke AW
    Mol Cancer; 2022 Feb; 21(1):57. PubMed ID: 35189910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.