These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36427731)
1. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. Xian X; Zhao H; Wang R; Huang H; Chen B; Zhang G; Liu W; Wan F Sci Total Environ; 2023 Feb; 859(Pt 2):160252. PubMed ID: 36427731 [TBL] [Abstract][Full Text] [Related]
2. Integrating biogeographic approach into classical biological control: Assessing the climate matching and ecological niche overlap of two natural enemies against common ragweed in China. Zhao H; Yang N; Huang H; Shi J; Xian X; Wan F; Liu WX J Environ Manage; 2023 Dec; 347():119095. PubMed ID: 37793290 [TBL] [Abstract][Full Text] [Related]
3. Phenology predicts the native and invasive range limits of common ragweed. Chapman DS; Haynes T; Beal S; Essl F; Bullock JM Glob Chang Biol; 2014 Jan; 20(1):192-202. PubMed ID: 24038855 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic species distribution modeling reveals a niche shift during invasion. Chapman DS; Scalone R; Štefanić E; Bullock JM Ecology; 2017 Jun; 98(6):1671-1680. PubMed ID: 28369815 [TBL] [Abstract][Full Text] [Related]
5. Ragweed is in the Air: Montagnani C; Gentili R; Citterio S Curr Protein Pept Sci; 2023; 24(1):98-111. PubMed ID: 36411556 [TBL] [Abstract][Full Text] [Related]
6. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Chapman DS; Makra L; Albertini R; Bonini M; Páldy A; Rodinkova V; Šikoparija B; Weryszko-Chmielewska E; Bullock JM Glob Chang Biol; 2016 Sep; 22(9):3067-79. PubMed ID: 26748862 [TBL] [Abstract][Full Text] [Related]
7. Niche Filling Dynamics of Ragweed ( Song XJ; Liu G; Qian ZQ; Zhu ZH Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987000 [TBL] [Abstract][Full Text] [Related]
8. Climate-change-induced range shifts of three allergenic ragweeds ( Rasmussen K; Thyrring J; Muscarella R; Borchsenius F PeerJ; 2017; 5():e3104. PubMed ID: 28321366 [TBL] [Abstract][Full Text] [Related]
9. Investigating the Current and Future Co-Occurrence of Iannella M; De Simone W; D'Alessandro P; Console G; Biondi M Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31540033 [TBL] [Abstract][Full Text] [Related]
10. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. Meyer L; Causse R; Pernin F; Scalone R; Bailly G; Chauvel B; Délye C; Le Corre V PLoS One; 2017; 12(5):e0176197. PubMed ID: 28489870 [TBL] [Abstract][Full Text] [Related]
11. Climate as a Predictive Factor for Invasion: Unravelling the Range Dynamics of Feng C; Guo F; Gao G Insects; 2024 May; 15(6):. PubMed ID: 38921089 [TBL] [Abstract][Full Text] [Related]
12. Climate change impacts on the distribution of the allergenic plant, common ragweed (Ambrosia artemisiifolia) in the eastern United States. Case MJ; Stinson KA PLoS One; 2018; 13(10):e0205677. PubMed ID: 30379857 [TBL] [Abstract][Full Text] [Related]
13. Short ragweeds is highly cross-reactive with other ragweeds. Christensen LH; Ipsen H; Nolte H; Maloney J; Nelson HS; Weber R; Lund K Ann Allergy Asthma Immunol; 2015 Dec; 115(6):490-495.e1. PubMed ID: 26507708 [TBL] [Abstract][Full Text] [Related]
14. How far could the alien boatman Trichocorixa verticalis verticalis spread? Worldwide estimation of its current and future potential distribution. Guareschi S; Coccia C; Sánchez-Fernández D; Carbonell JA; Velasco J; Boyero L; Green AJ; Millán A PLoS One; 2013; 8(3):e59757. PubMed ID: 23555771 [TBL] [Abstract][Full Text] [Related]
15. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. Rassati D; Faccoli M; Haack RA; Rabaglia RJ; Petrucco Toffolo E; Battisti A; Marini L PLoS One; 2016; 11(7):e0158519. PubMed ID: 27459191 [TBL] [Abstract][Full Text] [Related]
16. Early warning and management of invasive crop pests under global warming: estimating the global geographical distribution patterns and ecological niche overlap of three Diabrotica beetles. Jin Z; Zhao H; Xian X; Li M; Qi Y; Guo J; Yang N; Lü Z; Liu W Environ Sci Pollut Res Int; 2024 Feb; 31(9):13575-13590. PubMed ID: 38253826 [TBL] [Abstract][Full Text] [Related]
17. Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Urvois T; Auger-Rozenberg MA; Roques A; Rossi JP; Kerdelhue C Sci Rep; 2021 Jan; 11(1):1339. PubMed ID: 33446689 [TBL] [Abstract][Full Text] [Related]
18. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. Liu X; Guo Z; Ke Z; Wang S; Li Y PLoS One; 2011 Mar; 6(3):e18429. PubMed ID: 21479188 [TBL] [Abstract][Full Text] [Related]
19. Common ragweed: a threat to environmental health in Europe. Smith M; Cecchi L; Skjøth CA; Karrer G; Šikoparija B Environ Int; 2013 Nov; 61():115-26. PubMed ID: 24140540 [TBL] [Abstract][Full Text] [Related]
20. Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at Northern Latitudes. Scalone R; Lemke A; Štefanić E; Kolseth AK; Rašić S; Andersson L PLoS One; 2016; 11(11):e0166510. PubMed ID: 27846312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]