These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36428824)

  • 1. Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey.
    Huang SY; Hsu WL; Hsu RJ; Liu DW
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative adversarial networks in medical image segmentation: A review.
    Xun S; Li D; Zhu H; Chen M; Wang J; Li J; Chen M; Wu B; Zhang H; Chai X; Jiang Z; Zhang Y; Huang P
    Comput Biol Med; 2022 Jan; 140():105063. PubMed ID: 34864584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey.
    You A; Kim JK; Ryu IH; Yoo TK
    Eye Vis (Lond); 2022 Feb; 9(1):6. PubMed ID: 35109930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
    Chen S; Zou Y; Liu PX
    Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning segmentation strategy that minimizes the amount of manually annotated images.
    Pécot T; Alekseyenko A; Wallace K
    F1000Res; 2021; 10():256. PubMed ID: 35136569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image Segmentation Using Deep Learning: A Survey.
    Minaee S; Boykov Y; Porikli F; Plaza A; Kehtarnavaz N; Terzopoulos D
    IEEE Trans Pattern Anal Mach Intell; 2022 Jul; 44(7):3523-3542. PubMed ID: 33596172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution histopathology image generation and segmentation through adversarial training.
    Li W; Li J; Polson J; Wang Z; Speier W; Arnold C
    Med Image Anal; 2022 Jan; 75():102251. PubMed ID: 34814059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-stage segmentation of sublingual veins based on compact fully convolutional networks for Traditional Chinese Medicine images.
    Xu H; Chen X; Qian P; Li F
    Health Inf Sci Syst; 2023 Dec; 11(1):19. PubMed ID: 37035725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3DGAUnet: 3D Generative Adversarial Networks with a 3D U-Net Based Generator to Achieve the Accurate and Effective Synthesis of Clinical Tumor Image Data for Pancreatic Cancer.
    Shi Y; Tang H; Baine MJ; Hollingsworth MA; Du H; Zheng D; Zhang C; Yu H
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models.
    Celard P; Iglesias EL; Sorribes-Fdez JM; Romero R; Vieira AS; Borrajo L
    Neural Comput Appl; 2023; 35(3):2291-2323. PubMed ID: 36373133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data.
    Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y
    Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based auto segmentation using generative adversarial network on magnetic resonance images obtained for head and neck cancer patients.
    Kawahara D; Tsuneda M; Ozawa S; Okamoto H; Nakamura M; Nishio T; Nagata Y
    J Appl Clin Med Phys; 2022 May; 23(5):e13579. PubMed ID: 35263027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of semantic segmentation based on convolutional neural network in medical images].
    Wu Y; Lin L; Wang J; Wu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):533-540. PubMed ID: 32597097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation.
    Tyagi S; Talbar SN
    Comput Biol Med; 2022 Aug; 147():105781. PubMed ID: 35777084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.