These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36429064)

  • 1. Transcriptome Analysis Revealed the Mechanism of Inhibition of Saprophytic Growth of
    Qiu Z; Wang X; Wang S; Cai N; Huang J; Wang M; Shu L; Li T
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429064
    [No Abstract]   [Full Text] [Related]  

  • 2. Excessive Oxalic Acid Secreted by
    Shu L; Wang M; Wang S; Li Y; Xu H; Qiu Z; Li T
    Cells; 2022 Aug; 11(15):. PubMed ID: 35954267
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis - response to oxalic acid.
    Grąz M; Jarosz-Wilkołazka A; Janusz G; Mazur A; Wielbo J; Koper P; Żebracki K; Kubik-Komar A
    Microbiol Res; 2017 Jun; 199():79-88. PubMed ID: 28454712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomics reveals unique pine wood decay strategies in the Sparassis latifolia.
    Yang C; Ma L; Xiao D; Liu X; Jiang X; Lin Y
    Sci Rep; 2022 Nov; 12(1):19875. PubMed ID: 36400936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of ATAC-Seq and RNA-Seq Identifies Key Genes in Light-Induced Primordia Formation of
    Yang C; Ma L; Xiao D; Ying Z; Jiang X; Lin Y
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31888059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long non-coding RNAs and their potential function in response to postharvest senescence of Sparassis latifolia during cold storage.
    Weng M; Zhang D; Wang H; Yang C; Lin H; Pan Y; Lin Y
    Sci Rep; 2024 Jan; 14(1):747. PubMed ID: 38185662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and genetic characteristics of newly crossbred cauliflower mushroom (Sparassis latifolia).
    Sou HD; Ryoo R; Ryu SR; Ka KH; Park H; Joo SH
    J Microbiol; 2013 Oct; 51(5):552-7. PubMed ID: 23800950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and genetic evidence for a tetrapolar mating system in Sparassis latifolia.
    Li Y; Yang Y; Huang X; Huang J; Dong C
    Fungal Biol; 2020 Dec; 124(12):1004-1012. PubMed ID: 33213780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of a High-Fat/Cholesterol Diet on the Intestine of Rats Were Attenuated by
    Wei X; Gao Y; Cheng F; Yun S; Chang M; Cao J; Cheng Y; Feng C
    Food Technol Biotechnol; 2022 Dec; 60(4):469-487. PubMed ID: 36816874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome assembly and comprehensive assessment provide insight into fruiting body formation of Sparassis latifolia.
    Shu L; Wang M; Xu H; Qiu Z; Li T
    Sci Rep; 2022 Jun; 12(1):11075. PubMed ID: 35773379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culturability, Cultivation Potential, and Element Analysis of the Culinary-Medicinal Cauliflower Mushroom Sparassis latifolia (Agaricomycetes) from Pakistan.
    Ghafoor A; Niazi AR
    Int J Med Mushrooms; 2023; 25(9):85-95. PubMed ID: 37824408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De Novo Sequencing of a
    Xiao D; Ma L; Yang C; Ying Z; Jiang X; Lin YQ
    Can J Infect Dis Med Microbiol; 2018; 2018():1857170. PubMed ID: 29682127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid.
    Xing YM; Li B; Zeng X; Zhou LS; Lee TS; Lee MW; Chen XM; Guo SX
    Sci Rep; 2021 Aug; 11(1):17326. PubMed ID: 34462479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequence of the cauliflower mushroom Sparassis crispa (Hanabiratake) and its association with beneficial usage.
    Kiyama R; Furutani Y; Kawaguchi K; Nakanishi T
    Sci Rep; 2018 Oct; 8(1):16053. PubMed ID: 30375506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu(II)-induced molecular and physiological responses in the brown-rot basidiomycete Polyporales sp. KUC9061.
    Jang Y; Lee H; Lee SW; Choi YS; Ahn BJ; Kim GH; Kim JJ
    J Appl Microbiol; 2012 Oct; 113(4):790-7. PubMed ID: 22788907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic relationships of Korean Sparassis latifolia based on morphological and ITS rDNA characteristics.
    Ryoo R; Sou HD; Ka KH; Park H
    J Microbiol; 2013 Feb; 51(1):43-8. PubMed ID: 23456711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes.
    Dai YC; Wang Z; Binder M; Hibbett DS
    Mycologia; 2006; 98(4):584-92. PubMed ID: 17139851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta.
    Wang ZD; Yan N; Wang ZH; Zhang XH; Zhang JZ; Xue HM; Wang LX; Zhan Q; Xu YP; Guo DP
    Plant Mol Biol; 2017 Dec; 95(6):533-547. PubMed ID: 29076026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood Modification by Furfuryl Alcohol Resulted in a Delayed Decomposition Response in
    Skrede I; Solbakken MH; Hess J; Fossdal CG; Hegnar O; Alfredsen G
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Analysis Reveals the Symbiotic Mechanism of
    Li J; Lu Z; Yang Y; Hou J; Yuan L; Chen G; Wang C; Jia S; Feng X; Zhu S
    Mol Plant Microbe Interact; 2021 Feb; 34(2):168-185. PubMed ID: 33400553
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.