BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36429077)

  • 1. Single-Molecule and Vesicle Trafficking Analysis of Ubiquitination Involved in the Activity of Ammonium Transporter AMT1;3 in
    Zhao R; Cao Y; Ge Y; Xu J; Li R; Yang M; Chen Y; Wu D; Xiao J; Li R
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization.
    Wang Q; Zhao Y; Luo W; Li R; He Q; Fang X; Michele RD; Ast C; von Wirén N; Lin J
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13204-9. PubMed ID: 23882074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.
    Loqué D; Yuan L; Kojima S; Gojon A; Wirth J; Gazzarrini S; Ishiyama K; Takahashi H; von Wirén N
    Plant J; 2006 Nov; 48(4):522-34. PubMed ID: 17026539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.
    Yuan L; Loqué D; Kojima S; Rauch S; Ishiyama K; Inoue E; Takahashi H; von Wirén N
    Plant Cell; 2007 Aug; 19(8):2636-52. PubMed ID: 17693533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback inhibition of AMT1 NH
    Chen HY; Chen YN; Wang HY; Liu ZT; Frommer WB; Ho CH
    BMC Biol; 2020 Dec; 18(1):196. PubMed ID: 33317525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Kinase CIPK23 Inhibits Ammonium Transport in
    Straub T; Ludewig U; Neuhäuser B
    Plant Cell; 2017 Feb; 29(2):409-422. PubMed ID: 28188265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots.
    Qin DB; Liu MY; Yuan L; Zhu Y; Li XD; Chen LM; Wang Y; Chen YF; Wu WH; Wang Y
    J Exp Bot; 2020 Aug; 71(16):5087-5097. PubMed ID: 32443150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric regulation of transport activity by heterotrimerization of Arabidopsis ammonium transporter complexes in vivo.
    Yuan L; Gu R; Xuan Y; Smith-Valle E; Loqué D; Frommer WB; von Wirén N
    Plant Cell; 2013 Mar; 25(3):974-84. PubMed ID: 23463773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis.
    Cao H; Liu Q; Liu X; Ma Z; Zhang J; Li X; Shen L; Yuan J; Zhang Q
    Plant Physiol; 2023 Oct; 193(3):1954-1969. PubMed ID: 37471275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity.
    Loqué D; Mora SI; Andrade SL; Pantoja O; Frommer WB
    J Biol Chem; 2009 Sep; 284(37):24988-95. PubMed ID: 19581303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings.
    Huang L; Zhang H; Zhang H; Deng XW; Wei N
    Plant Sci; 2015 Sep; 238():330-9. PubMed ID: 26259199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots.
    Duan F; Giehl RFH; Geldner N; Salt DE; von Wirén N
    PLoS Biol; 2018 Oct; 16(10):e2006024. PubMed ID: 30356235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner.
    Lima JE; Kojima S; Takahashi H; von Wirén N
    Plant Cell; 2010 Nov; 22(11):3621-33. PubMed ID: 21119058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expanded family of ammonium transporters in the perennial poplar plant.
    Couturier J; Montanini B; Martin F; Brun A; Blaudez D; Chalot M
    New Phytol; 2007; 174(1):137-150. PubMed ID: 17335504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis.
    Giehl RFH; Laginha AM; Duan F; Rentsch D; Yuan L; von Wirén N
    Mol Plant; 2017 Nov; 10(11):1449-1460. PubMed ID: 29032248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1.
    Yuan L; Loqué D; Ye F; Frommer WB; von Wirén N
    Plant Physiol; 2007 Feb; 143(2):732-44. PubMed ID: 17172286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion.
    Boo MV; Hiong KC; Goh EJK; Choo CYL; Wong WP; Chew SF; Ip YK
    J Comp Physiol B; 2018 Sep; 188(5):765-777. PubMed ID: 29691634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes.
    Gaur VS; Singh US; Gupta AK; Kumar A
    Mol Biol Rep; 2012 Mar; 39(3):2233-41. PubMed ID: 21678052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AMT1 family genes from Malus robusta display differential transcription features and ammonium transport abilities.
    Li H; Yang QS; Liu W; Lin J; Chang YH
    Mol Biol Rep; 2017 Oct; 44(5):379-390. PubMed ID: 28840433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular identification of tobacco NtAMT1.3 that mediated ammonium root-influx with high affinity and improved plant growth on ammonium when overexpressed in Arabidopsis and tobacco.
    Fan TF; Cheng XY; Shi DX; He MJ; Yang C; Liu L; Li CJ; Sun YC; Chen YY; Xu C; Zhang L; Liu LH
    Plant Sci; 2017 Nov; 264():102-111. PubMed ID: 28969790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.