BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 36429317)

  • 1. Influence of Drought Stress on Physiological Responses and Bioactive Compounds in Chicory (
    Delfine S; Fratianni A; D'Agostino A; Panfili G
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation.
    Mathieu AS; Lutts S; Vandoorne B; Descamps C; Périlleux C; Dielen V; Van Herck JC; Quinet M
    J Plant Physiol; 2014 Jan; 171(2):109-18. PubMed ID: 24331425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime.
    Monti A; Amaducci MT; Pritoni G; Venturi G
    J Exp Bot; 2005 May; 56(415):1389-95. PubMed ID: 15809283
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    De Caroli M; Rampino P; Curci LM; Pecatelli G; Carrozzo S; Piro G
    Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses.
    Perera RS; Cullen BR; Eckard RJ
    Plants (Basel); 2019 Jul; 8(7):. PubMed ID: 31315284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance.
    Zait Y; Shtein I; Schwartz A
    Tree Physiol; 2019 May; 39(5):701-716. PubMed ID: 30597082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions.
    Zou J; Hu W; Li Y; Zhu H; He J; Wang Y; Meng Y; Chen B; Zhao W; Wang S; Zhou Z
    Plant J; 2022 Jul; 111(2):391-405. PubMed ID: 35506315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species.
    Hu L; Wang Z; Huang B
    Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.
    Sengupta D; Guha A; Reddy AR
    J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency.
    Zhang Y; Ding J; Wang H; Su L; Zhao C
    BMC Plant Biol; 2020 Jun; 20(1):288. PubMed ID: 32571226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Traits, Morphology, and Herbage Production of Vernalised and Non-Vernalised Chicory cv. Choice (
    Mangwe MC; Bryant RH; Moreno García CA; Maxwell TMR; Gregorini P
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought.
    Stewart JD; Zine El Abidine A; Bernier PY
    Tree Physiol; 1995 Jan; 15(1):57-64. PubMed ID: 14966012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrations-dependent effect of exogenous abscisic acid on photosynthesis, growth and phenolic content of Dracocephalum moldavica L. under drought stress.
    Khaleghnezhad V; Yousefi AR; Tavakoli A; Farajmand B; Mastinu A
    Planta; 2021 May; 253(6):127. PubMed ID: 34036415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest.
    Misson L; Limousin JM; Rodriguez R; Letts MG
    Plant Cell Environ; 2010 Nov; 33(11):1898-910. PubMed ID: 20561253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physio-Biochemical and Agronomic Responses of Faba Beans to Exogenously Applied Nano-Silicon Under Drought Stress Conditions.
    Desoky EM; Mansour E; El-Sobky EEA; Abdul-Hamid MI; Taha TF; Elakkad HA; Arnaout SMAI; Eid RSM; El-Tarabily KA; Yasin MAT
    Front Plant Sci; 2021; 12():637783. PubMed ID: 34603344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought.
    Singh SK; Raja Reddy K
    J Photochem Photobiol B; 2011 Oct; 105(1):40-50. PubMed ID: 21820316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy.
    Brugnoli E; Björkman O
    Planta; 1992 Jun; 187(3):335-47. PubMed ID: 24178074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic sensitivity to drought varies among populations of Quercus ilex along a rainfall gradient.
    Martin-StPaul NK; Limousin JM; Rodr Guez-Calcerrada JS; Ruffault J; Rambal S; Letts MG; Misson L
    Funct Plant Biol; 2012 Feb; 39(1):25-37. PubMed ID: 32480757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (
    Bheemanahalli R; Ramamoorthy P; Poudel S; Samiappan S; Wijewardane N; Reddy KR
    Plant Direct; 2022 Aug; 6(8):e434. PubMed ID: 35959217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.
    Feller U
    J Plant Physiol; 2016 Sep; 203():84-94. PubMed ID: 27083537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.