BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36429621)

  • 1. A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations.
    Hu L; Ji J; Liu H; Ennis R
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for clustered survival data: Estimation of treatment effect heterogeneity and variable selection.
    Hu L
    Biom J; 2024 Jan; 66(1):e2200178. PubMed ID: 38072661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating heterogeneous survival treatment effect in observational data using machine learning.
    Hu L; Ji J; Li F
    Stat Med; 2021 Sep; 40(21):4691-4713. PubMed ID: 34114252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-World Evidence, Causal Inference, and Machine Learning.
    Crown WH
    Value Health; 2019 May; 22(5):587-592. PubMed ID: 31104739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible approach for causal inference with multiple treatments and clustered survival outcomes.
    Hu L; Ji J; Ennis RD; Hogan JW
    Stat Med; 2022 Nov; 41(25):4982-4999. PubMed ID: 35948011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clarifying selection bias in cluster randomized trials.
    Li F; Tian Z; Bobb J; Papadogeorgou G; Li F
    Clin Trials; 2022 Feb; 19(1):33-41. PubMed ID: 34894795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulate randomized clinical trials using heterogeneous treatment effect estimation for personalized treatments: Methodology review and benchmark.
    Ling Y; Upadhyaya P; Chen L; Jiang X; Kim Y
    J Biomed Inform; 2023 Jan; 137():104256. PubMed ID: 36455806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects.
    Jawadekar N; Kezios K; Odden MC; Stingone JA; Calonico S; Rudolph K; Zeki Al Hazzouri A
    Am J Epidemiol; 2023 Jul; 192(7):1155-1165. PubMed ID: 36843042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Machine Learning Estimation of Conditional Average Treatment Effects: A Blessing and a Curse.
    Post RAJ; Petkovic M; van den Heuvel IL; van den Heuvel ER
    Epidemiology; 2024 Jan; 35(1):32-40. PubMed ID: 37889951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of modern approaches for identifying and evaluating heterogeneous treatment effects from clinical data.
    Lipkovich I; Svensson D; Ratitch B; Dmitrienko A
    Clin Trials; 2023 Aug; 20(4):380-393. PubMed ID: 37203150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A BAYESIAN MACHINE LEARNING APPROACH FOR ESTIMATING HETEROGENEOUS SURVIVOR CAUSAL EFFECTS: APPLICATIONS TO A CRITICAL CARE TRIAL.
    Chen X; Harhay MO; Tong G; Li F
    Ann Appl Stat; 2024 Mar; 18(1):350-374. PubMed ID: 38455841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal inference for observational longitudinal studies using deep survival models.
    Zhu J; Gallego B
    J Biomed Inform; 2022 Jul; 131():104119. PubMed ID: 35714819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Federated causal inference in heterogeneous observational data.
    Xiong R; Koenecke A; Powell M; Shen Z; Vogelstein JT; Athey S
    Stat Med; 2023 Oct; 42(24):4418-4439. PubMed ID: 37553084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases.
    Wendling T; Jung K; Callahan A; Schuler A; Shah NH; Gallego B
    Stat Med; 2018 Oct; 37(23):3309-3324. PubMed ID: 29862536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning end-to-end patient representations through self-supervised covariate balancing for causal treatment effect estimation.
    Tesei G; Giampanis S; Shi J; Norgeot B
    J Biomed Inform; 2023 Apr; 140():104339. PubMed ID: 36940895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causal machine learning for predicting treatment outcomes.
    Feuerriegel S; Frauen D; Melnychuk V; Schweisthal J; Hess K; Curth A; Bauer S; Kilbertus N; Kohane IS; van der Schaar M
    Nat Med; 2024 Apr; 30(4):958-968. PubMed ID: 38641741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine-Learning Approach for Estimating Subgroup- and Individual-Level Treatment Effects: An Illustration Using the 65 Trial.
    Sadique Z; Grieve R; Diaz-Ordaz K; Mouncey P; Lamontagne F; O'Neill S
    Med Decis Making; 2022 Oct; 42(7):923-936. PubMed ID: 35607982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal inference methods to assess safety upper bounds in randomized trials with noncompliance.
    Wang Y; Berlin JA; Pinheiro J; Wilcox MA
    Clin Trials; 2015 Jun; 12(3):265-75. PubMed ID: 25733675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CauRuler: Causal irredundant association rule miner for complex patient trajectory modelling.
    Guillamet GH; Seguí FL; Vidal-Alaball J; López B
    Comput Biol Med; 2023 Mar; 155():106636. PubMed ID: 36780801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propensity score methods for observational studies with clustered data: A review.
    Chang TH; Stuart EA
    Stat Med; 2022 Aug; 41(18):3612-3626. PubMed ID: 35603766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.