These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 36429751)
1. Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type. Qin Y; Wu J; Xiao W; Wang K; Huang A; Liu B; Yu J; Li C; Yu F; Ren Z Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429751 [TBL] [Abstract][Full Text] [Related]
2. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. Dinh A; Miertschin S; Young A; Mohanty SD BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707 [TBL] [Abstract][Full Text] [Related]
3. Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011-2018. Zhang C; Chen X; Wang S; Hu J; Wang C; Liu X Psychiatry Res; 2021 Dec; 306():114261. PubMed ID: 34781111 [TBL] [Abstract][Full Text] [Related]
4. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related]
5. Predicting Fetal Alcohol Spectrum Disorders Using Machine Learning Techniques: Multisite Retrospective Cohort Study. Oh SS; Kuang I; Jeong H; Song JY; Ren B; Moon JY; Park EC; Kawachi I J Med Internet Res; 2023 Jul; 25():e45041. PubMed ID: 37463016 [TBL] [Abstract][Full Text] [Related]
6. Comparing the accuracy of four machine learning models in predicting type 2 diabetes onset within the Chinese population: a retrospective study. Liu H; Dong S; Yang H; Wang L; Liu J; Du Y; Liu J; Lyu Z; Wang Y; Jiang L; Yu S; Fu X J Int Med Res; 2024 Jun; 52(6):3000605241253786. PubMed ID: 38870271 [TBL] [Abstract][Full Text] [Related]
7. Machine learning models for prediction of invasion Klebsiella pneumoniae liver abscess syndrome in diabetes mellitus: a singled centered retrospective study. Feng C; Di J; Jiang S; Li X; Hua F BMC Infect Dis; 2023 May; 23(1):284. PubMed ID: 37142976 [TBL] [Abstract][Full Text] [Related]
8. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
9. Application of machine learning algorithms to identify people with low bone density. Xu R; Chen Y; Yao Z; Wu W; Cui J; Wang R; Diao Y; Jin C; Hong Z; Li X Front Public Health; 2024; 12():1347219. PubMed ID: 38726233 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a prediction model based on machine learning algorithms for predicting the risk of heart failure in middle-aged and older US people with prediabetes or diabetes. Wang Y; Hou R; Ni B; Jiang Y; Zhang Y Clin Cardiol; 2023 Oct; 46(10):1234-1243. PubMed ID: 37519220 [TBL] [Abstract][Full Text] [Related]
11. Comparisons of the prediction models for undiagnosed diabetes between machine learning versus traditional statistical methods. Choi SG; Oh M; Park DH; Lee B; Lee YH; Jee SH; Jeon JY Sci Rep; 2023 Aug; 13(1):13101. PubMed ID: 37567907 [TBL] [Abstract][Full Text] [Related]
12. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches. Ganie SM; Malik MB; Arif T J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418 [TBL] [Abstract][Full Text] [Related]
13. A systematic comparison of machine learning algorithms to develop and validate prediction model to predict heart failure risk in middle-aged and elderly patients with periodontitis (NHANES 2009 to 2014). Wang Y; Xiao Y; Zhang Y Medicine (Baltimore); 2023 Aug; 102(34):e34878. PubMed ID: 37653785 [TBL] [Abstract][Full Text] [Related]
14. Machine learning algorithms predicting bladder cancer associated with diabetes and hypertension: NHANES 2009 to 2018. Xu S; Huang J Medicine (Baltimore); 2024 Jan; 103(4):e36587. PubMed ID: 38277522 [TBL] [Abstract][Full Text] [Related]
15. A machine learning model to predict the risk of depression in US adults with obstructive sleep apnea hypopnea syndrome: a cross-sectional study. Li E; Ai F; Liang C Front Public Health; 2023; 11():1348803. PubMed ID: 38259742 [TBL] [Abstract][Full Text] [Related]
16. Stroke Prediction with Machine Learning Methods among Older Chinese. Wu Y; Fang Y Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178250 [TBL] [Abstract][Full Text] [Related]
17. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database. Hao N; Sun P; Zhao W; Li X Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010 [TBL] [Abstract][Full Text] [Related]
18. A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure. Zhao M; Wan J; Qin W; Huang X; Chen G; Zhao X Comput Methods Programs Biomed; 2023 Jun; 235():107537. PubMed ID: 37037162 [TBL] [Abstract][Full Text] [Related]
19. Development and Validation of an Insulin Resistance Model for a Population with Chronic Kidney Disease Using a Machine Learning Approach. Lee CL; Liu WJ; Tsai SF Nutrients; 2022 Jul; 14(14):. PubMed ID: 35889789 [TBL] [Abstract][Full Text] [Related]
20. Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation. He J; Li J; Jiang S; Cheng W; Jiang J; Xu Y; Yang J; Zhou X; Chai C; Wu C Front Public Health; 2022; 10():967681. PubMed ID: 36091522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]