These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36430287)
21. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. Gillman JD; Stacey MG; Cui Y; Berg HR; Stacey G BMC Plant Biol; 2014 May; 14():143. PubMed ID: 24886084 [TBL] [Abstract][Full Text] [Related]
22. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Yang H; Wang W; He Q; Xiang S; Tian D; Zhao T; Gai J Theor Appl Genet; 2019 Oct; 132(10):2793-2807. PubMed ID: 31280342 [TBL] [Abstract][Full Text] [Related]
23. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Pham AT; Lee JD; Shannon JG; Bilyeu KD Theor Appl Genet; 2011 Sep; 123(5):793-802. PubMed ID: 21681491 [TBL] [Abstract][Full Text] [Related]
24. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. Pham AT; Lee JD; Shannon JG; Bilyeu KD BMC Plant Biol; 2010 Sep; 10():195. PubMed ID: 20828382 [TBL] [Abstract][Full Text] [Related]
25. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Zhang W; Xu W; Zhang H; Liu X; Cui X; Li S; Song L; Zhu Y; Chen X; Chen H Theor Appl Genet; 2021 May; 134(5):1329-1341. PubMed ID: 33507340 [TBL] [Abstract][Full Text] [Related]
26. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Zhang G; Ahmad MZ; Chen B; Manan S; Zhang Y; Jin H; Wang X; Zhao J Plant J; 2020 Aug; 103(4):1351-1371. PubMed ID: 32412123 [TBL] [Abstract][Full Text] [Related]
27. Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Vogel PA; Bayon de Noyer S; Park H; Nguyen H; Hou L; Changa T; Khang HL; Ciftci ON; Wang T; Cahoon EB; Clemente TE Plant Biotechnol J; 2019 Jul; 17(7):1369-1379. PubMed ID: 30575262 [TBL] [Abstract][Full Text] [Related]
28. Li X; Zheng J; Yang Y; Liao H Plant Physiol; 2018 Nov; 178(3):1233-1248. PubMed ID: 30266750 [TBL] [Abstract][Full Text] [Related]
29. GmMAX2-D14 and -KAI interaction-mediated SL and KAR signaling play essential roles in soybean root nodulation. Ahmad MZ; Rehman NU; Yu S; Zhou Y; Haq BU; Wang J; Li P; Zeng Z; Zhao J Plant J; 2020 Jan; 101(2):334-351. PubMed ID: 31559658 [TBL] [Abstract][Full Text] [Related]
30. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Li J; Zhang Y; Ma R; Huang W; Hou J; Fang C; Wang L; Yuan Z; Sun Q; Dong X; Hou Y; Wang Y; Kong F; Sun L Plant Biotechnol J; 2022 Jun; 20(6):1110-1121. PubMed ID: 35178867 [TBL] [Abstract][Full Text] [Related]
31. Quantitative proteomic and lipidomics analyses of high oil content GmDGAT1-2 transgenic soybean illustrate the regulatory mechanism of lipoxygenase and oleosin. Xu Y; Yan F; Liu Y; Wang Y; Gao H; Zhao S; Zhu Y; Wang Q; Li J Plant Cell Rep; 2021 Dec; 40(12):2303-2323. PubMed ID: 34427748 [TBL] [Abstract][Full Text] [Related]
32. Exploration of GmDof11- Zhao Q; Zhao D; Wang Y; Li Y; Ni C; Su Z; Lian P; Liu S; Liu H; Zhang J; Yao D J Agric Food Chem; 2024 Jul; 72(30):16889-16899. PubMed ID: 39021146 [TBL] [Abstract][Full Text] [Related]
33. Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Kanai M; Yamada T; Hayashi M; Mano S; Nishimura M Sci Rep; 2019 Jun; 9(1):8924. PubMed ID: 31222045 [TBL] [Abstract][Full Text] [Related]
34. Elevation of soybean seed oil content through selection for seed coat shininess. Zhang D; Sun L; Li S; Wang W; Ding Y; Swarm SA; Li L; Wang X; Tang X; Zhang Z; Tian Z; Brown PJ; Cai C; Nelson RL; Ma J Nat Plants; 2018 Jan; 4(1):30-35. PubMed ID: 29292374 [TBL] [Abstract][Full Text] [Related]
35. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis. Goettel W; Ramirez M; Upchurch RG; An YQ Theor Appl Genet; 2016 Aug; 129(8):1577-93. PubMed ID: 27179525 [TBL] [Abstract][Full Text] [Related]
36. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165 [TBL] [Abstract][Full Text] [Related]
37. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Goettel W; Zhang H; Li Y; Qiao Z; Jiang H; Hou D; Song Q; Pantalone VR; Song BH; Yu D; An YC Nat Commun; 2022 Jun; 13(1):3051. PubMed ID: 35650185 [TBL] [Abstract][Full Text] [Related]
38. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Eskandari M; Cober ER; Rajcan I Theor Appl Genet; 2013 Jun; 126(6):1677-87. PubMed ID: 23536049 [TBL] [Abstract][Full Text] [Related]
39. A soybean acyl carrier protein, GmACP, is important for root nodule symbiosis. Wang J; Tóth K; Tanaka K; Nguyen CT; Yan Z; Brechenmacher L; Dahmen J; Chen M; Thelen JJ; Qiu L; Stacey G Mol Plant Microbe Interact; 2014 May; 27(5):415-23. PubMed ID: 24400939 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean. Liu JY; Li P; Zhang YW; Zuo JF; Li G; Han X; Dunwell JM; Zhang YM Plant J; 2020 Aug; 103(3):1103-1124. PubMed ID: 32344462 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]