These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 36430315)
1. Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions. Foahom Gouabou AC; Collenne J; Monnier J; Iguernaissi R; Damoiseaux JL; Moudafi A; Merad D Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430315 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening? Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242 [TBL] [Abstract][Full Text] [Related]
5. Skin lesion classification with ensembles of deep convolutional neural networks. Harangi B J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029 [TBL] [Abstract][Full Text] [Related]
6. Fusion between an Algorithm Based on the Characterization of Melanocytic Lesions' Asymmetry with an Ensemble of Convolutional Neural Networks for Melanoma Detection. Collenne J; Monnier J; Iguernaissi R; Nawaf M; Richard MA; Grob JJ; Gaudy-Marqueste C; Dubuisson S; Merad D J Invest Dermatol; 2024 Jul; 144(7):1600-1607.e2. PubMed ID: 38296020 [TBL] [Abstract][Full Text] [Related]
7. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions. Serban ED; Farnetani F; Pellacani G; Constantin MM Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304 [TBL] [Abstract][Full Text] [Related]
8. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC; J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724 [TBL] [Abstract][Full Text] [Related]
9. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Iqbal I; Younus M; Walayat K; Kakar MU; Ma J Comput Med Imaging Graph; 2021 Mar; 88():101843. PubMed ID: 33445062 [TBL] [Abstract][Full Text] [Related]
10. Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning. Attallah O Comput Biol Med; 2024 Aug; 178():108798. PubMed ID: 38925085 [TBL] [Abstract][Full Text] [Related]
11. Consistency of convolutional neural networks in dermoscopic melanoma recognition: A prospective real-world study about the pitfalls of augmented intelligence. Goessinger EV; Cerminara SE; Mueller AM; Gottfrois P; Huber S; Amaral M; Wenz F; Kostner L; Weiss L; Kunz M; Maul JT; Wespi S; Broman E; Kaufmann S; Patpanathapillai V; Treyer I; Navarini AA; Maul LV J Eur Acad Dermatol Venereol; 2024 May; 38(5):945-953. PubMed ID: 38158385 [TBL] [Abstract][Full Text] [Related]
12. A novel deep learning framework for accurate melanoma diagnosis integrating imaging and genomic data for improved patient outcomes. Kiran A; Narayanasamy N; Ramesh JVN; Ahmad MW Skin Res Technol; 2024 Jun; 30(6):e13770. PubMed ID: 38881051 [TBL] [Abstract][Full Text] [Related]
13. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
14. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
15. Fusing fine-tuned deep features for skin lesion classification. Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354 [TBL] [Abstract][Full Text] [Related]
16. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions. Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847 [TBL] [Abstract][Full Text] [Related]
20. Melanoma detection by analysis of clinical images using convolutional neural network. Nasr-Esfahani E; Samavi S; Karimi N; Soroushmehr SM; Jafari MH; Ward K; Najarian K Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1373-1376. PubMed ID: 28268581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]