These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36430353)

  • 21. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanoparticle and graphene oxide incorporated strontium crosslinked alginate/carboxymethyl cellulose composites for o-nitroaniline reduction and Suzuki-Miyaura cross-coupling reactions.
    Thomas M; Sheikh MUD; Ahirwar D; Bano M; Khan F
    J Colloid Interface Sci; 2017 Nov; 505():115-129. PubMed ID: 28577461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic liquid immobilized nickel(0) nanoparticles as stable and highly efficient catalysts for selective hydrogenation in the aqueous phase.
    Hu Y; Yu Y; Hou Z; Yang H; Feng B; Li H; Qiao Y; Wang X; Hua L; Pan Z; Zhao X
    Chem Asian J; 2010 May; 5(5):1178-84. PubMed ID: 20340156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis.
    Paul M; Sarkar K; Dastidar P
    Chemistry; 2015 Jan; 21(1):255-68. PubMed ID: 25351461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Palladium-phosphorus/sulfur nanoparticles (NPs) decorated on graphene oxide: synthesis using the same precursor for NPs and catalytic applications in Suzuki-Miyaura coupling.
    Joshi H; Sharma KN; Sharma AK; Singh AK
    Nanoscale; 2014 May; 6(9):4588-97. PubMed ID: 24626740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile synthesis of Cu NPs@Fe
    Nezafat Z; Karimkhani MM; Nasrollahzadeh M; Javanshir S; Jamshidi A; Orooji Y; Jang HW; Shokouhimehr M
    Food Chem Toxicol; 2022 Oct; 168():113310. PubMed ID: 35931246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.
    Singh C; Goyal A; Singhal S
    Nanoscale; 2014 Jul; 6(14):7959-70. PubMed ID: 24902783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe
    Veisi H; Ghorbani M; Hemmati S
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():584-593. PubMed ID: 30813061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and Characterization of
    Ishida J; Nakatsuji M; Nagata T; Kawasaki H; Suzuki T; Obora Y
    ACS Omega; 2020 Apr; 5(16):9598-9604. PubMed ID: 32363312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al
    Zacharaki E; Beato P; Tiruvalam RR; Andersson KJ; Fjellvåg H; Sjåstad AO
    Langmuir; 2017 Sep; 33(38):9836-9843. PubMed ID: 28832150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition.
    Tao S; Yang F; Schuch J; Jaegermann W; Kaiser B
    ChemSusChem; 2018 Mar; 11(5):948-958. PubMed ID: 29227580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration.
    Seo S; Perez GA; Tewari K; Comas X; Kim M
    Sci Rep; 2018 Aug; 8(1):11786. PubMed ID: 30082729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol.
    Krebsz M; Kótai L; Sajó IE; Váczi T; Pasinszki T
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nickel-cysteine nanoparticles: Synthesis, characterization and application for direct electron transfer studies.
    Sharifi E; Shams E; Salimi A; Noorbakhsh A; Amini MK
    Colloids Surf B Biointerfaces; 2018 May; 165():135-143. PubMed ID: 29475035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water.
    Cai Y; Yan X; Wang S; Zhu Z; Cen M; Ou C; Zhao Q; Yan Q; Wang J; Yao Y
    Inorg Chem; 2021 Mar; 60(5):2883-2887. PubMed ID: 33570384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology-Dependent Catalytic Activity of Ru/CeO₂ in Dry Reforming of Methane.
    He L; Ren Y; Fu Y; Yue B; Tsang SCE; He H
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable catalysis: rational Pd loading on MIL-101Cr-NH2 for more efficient and recyclable Suzuki-Miyaura reactions.
    Pascanu V; Yao Q; Bermejo Gómez A; Gustafsson M; Yun Y; Wan W; Samain L; Zou X; Martín-Matute B
    Chemistry; 2013 Dec; 19(51):17483-93. PubMed ID: 24265270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane.
    Guo K; Li H; Yu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.