BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36430356)

  • 21. Genome-wide investigation of calcium-dependent protein kinase gene family in pineapple: evolution and expression profiles during development and stress.
    Zhang M; Liu Y; He Q; Chai M; Huang Y; Chen F; Wang X; Liu Y; Cai H; Qin Y
    BMC Genomics; 2020 Jan; 21(1):72. PubMed ID: 31973690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating Sugar Metabolism With Transport: Elevation of Endogenous Cell Wall Invertase Activity Up-Regulates
    Ru L; He Y; Zhu Z; Patrick JW; Ruan YL
    Front Genet; 2020; 11():592596. PubMed ID: 33193736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the
    Fang T; Rao Y; Wang M; Li Y; Liu Y; Xiong P; Zeng L
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low temperature storage alleviates internal browning of 'Comte de Paris' winter pineapple fruit by reducing phospholipid degradation, phosphatidic acid accumulation and membrane lipid peroxidation processes.
    Hong K; Yao Q; Golding JB; Pristijiono P; Zhang X; Hou X; Yuan D; Li Y; Chen L; Song K; Chen J
    Food Chem; 2023 Mar; 404(Pt B):134656. PubMed ID: 36323018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development.
    Xie H; Wang D; Qin Y; Ma A; Fu J; Qin Y; Hu G; Zhao J
    BMC Plant Biol; 2019 Nov; 19(1):499. PubMed ID: 31726992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple (
    Lin W; Liu S; Xiao X; Sun W; Lu X; Gao Y; He J; Zhu Z; Wu Q; Zhang X
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38138962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.
    Ong WD; Voo LY; Kumar VS
    PLoS One; 2012; 7(10):e46937. PubMed ID: 23091603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative transcriptomic and metabolomic analysis of D-leaf of seven pineapple varieties differing in N-P-K% contents.
    Chen J; Zeng H; Zhang X
    BMC Plant Biol; 2021 Nov; 21(1):550. PubMed ID: 34809576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification and expression analysis of the ERF transcription factor family in pineapple (
    Huang Y; Liu Y; Zhang M; Chai M; He Q; Jakada BH; Chen F; Chen H; Jin X; Cai H; Qin Y
    PeerJ; 2020; 8():e10014. PubMed ID: 33024641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Identification and Expression Profile Analysis of Sugars Will Eventually Be Exported Transporter (
    Li Z; Guo Y; Jin S; Wu H
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).
    Yusuf NH; Ong WD; Redwan RM; Latip MA; Kumar SV
    Gene; 2015 Oct; 571(1):71-80. PubMed ID: 26115767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pineapple MADS-box gene family and the evolution of early monocot flower.
    Hu J; Chang X; Zhang Y; Yu X; Qin Y; Sun Y; Zhang L
    Sci Rep; 2021 Jan; 11(1):849. PubMed ID: 33441609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene prediction for leaf margin phenotype and fruit flesh color in pineapple (Ananas comosus) using haplotype-resolved genome sequencing.
    Nashima K; Shirasawa K; Isobe S; Urasaki N; Tarora K; Irei A; Shoda M; Takeuchi M; Omine Y; Nishiba Y; Sugawara T; Kunihisa M; Nishitani C; Yamamoto T
    Plant J; 2022 May; 110(3):720-734. PubMed ID: 35122338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of bromelain subfamily proteases encoded in the pineapple genome.
    Yow AG; Bostan H; Young R; Valacchi G; Gillitt N; Perkins-Veazie P; Xiang QJ; Iorizzo M
    Sci Rep; 2023 Jul; 13(1):11605. PubMed ID: 37463972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive tissue-specific transcriptome profiling of pineapple (
    Mao Q; Chen C; Xie T; Luan A; Liu C; He Y
    PeerJ; 2018; 6():e6028. PubMed ID: 30564517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Sugar transport, metabolism, accumulation and their regulation in fruits].
    Chen JW; Zhang SL; Zhang LC
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Feb; 30(1):1-10. PubMed ID: 15583402
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Zhang Z; Zou L; Ren C; Ren F; Wang Y; Fan P; Li S; Liang Z
    Genes (Basel); 2019 Mar; 10(4):. PubMed ID: 30925768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato.
    Ko HY; Ho LH; Neuhaus HE; Guo WJ
    Plant Physiol; 2021 Dec; 187(4):2230-2245. PubMed ID: 34618023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Identification and Expression Profiling Analysis of SWEET Family Genes Involved in Fruit Development in Plum (
    Jiang C; Zeng S; Yang J; Wang X
    Genes (Basel); 2023 Aug; 14(9):. PubMed ID: 37761819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analysis of MADS-box families and their expressions in flower organs development of pineapple (
    Pan X; Ouyang Y; Wei Y; Zhang B; Wang J; Zhang H
    Front Plant Sci; 2022; 13():948587. PubMed ID: 36311063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.