BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3643037)

  • 21. Studies on human lenses: II. Distribution and solubility of fluorescent pigments in cataractous and non-cataractous lenses of Indian origin.
    Bandyopadhyay S; Chattopadhyay D; Ghosh SK; Chakrabarti B
    Photochem Photobiol; 1992 May; 55(5):765-72. PubMed ID: 1528989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of protein diffusivity in intact human and bovine lenses with application to cataract.
    Tanaka T; Benedek GB
    Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunochemical detection of dicarbonyl-derived imidazolium protein crosslinks in human lenses.
    Shamsi FA; Nagaraj RH
    Curr Eye Res; 1999 Sep; 19(3):276-84. PubMed ID: 10487968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sequences of two peptides from cataract lenses suggest they arise by deamidation.
    Takemoto L; Emmons T; Granstrom D
    Curr Eye Res; 1990 Aug; 9(8):793-7. PubMed ID: 2276279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyamines in normal and cataractous human lenses: evidence for post-translational modification.
    Kremzner LT; Roy D; Spector A
    Exp Eye Res; 1983 Dec; 37(6):649-59. PubMed ID: 6662211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of thiol repair systems in human cataractous lenses.
    Wei M; Xing KY; Fan YC; Libondi T; Lou MF
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):598-605. PubMed ID: 25537203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium ATPase activity and membrane structure in clear and cataractous human lenses.
    Paterson CA; Zeng J; Husseini Z; Borchman D; Delamere NA; Garland D; Jimenez-Asensio J
    Curr Eye Res; 1997 Apr; 16(4):333-8. PubMed ID: 9134322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activities of ascorbate free radical reductase and H2O2-dependent NADH oxidation in senile cataractous human lenses.
    Bando M; Obazawa H
    Exp Eye Res; 1990 Jun; 50(6):779-86. PubMed ID: 2373170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free amino acids in the normal and cataractous bovine and human lens capsule and lens.
    Cioli S; D'Arrigo V
    Ophthalmologica; 1976; 173(6):505-12. PubMed ID: 1004817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The bovine lens as an ion-exchanger: a comparison with ion levels in human cataractous lenses.
    Duncan G; Bushell AR
    Exp Eye Res; 1976 Sep; 23(3):341-53. PubMed ID: 976375
    [No Abstract]   [Full Text] [Related]  

  • 40. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.