BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36430465)

  • 1. New Effective Method of Lactococcus Genome Editing Using Guide RNA-Directed Transposition.
    Pechenov PY; Garagulya DA; Stanovov DS; Letarov AV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430465
    [No Abstract]   [Full Text] [Related]  

  • 2. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-plasmid systems based on CRISPR-Cas9 for gene editing in Lactococcus lactis.
    Song X; Liu L; Liu XX; Xiong ZQ; Xie CL; Wang SJ; Ai LZ
    J Dairy Sci; 2021 Oct; 104(10):10576-10585. PubMed ID: 34275631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
    Millen AM; Horvath P; Boyaval P; Romero DA
    PLoS One; 2012; 7(12):e51663. PubMed ID: 23240053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000.
    Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C
    Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Software-based screening for efficient sgRNAs in Lactococcus lactis.
    Wang H; Ai L; Xia Y; Wang G; Xiong Z; Song X
    J Sci Food Agric; 2024 Jan; 104(2):1200-1206. PubMed ID: 37647419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Base Editors for Simultaneously Editing Multiple Loci in
    Tian K; Hong X; Guo M; Li Y; Wu H; Caiyin Q; Qiao J
    ACS Synth Biol; 2022 Nov; 11(11):3644-3656. PubMed ID: 36065829
    [No Abstract]   [Full Text] [Related]  

  • 12. [Advances in utilizing the endogenous CRISPR-Cas system for genome editing of lactic acid bacteria].
    Zhu Q; Xu C; Zhang S; Xie N; Pang X; Lü J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2447-2458. PubMed ID: 35871616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus.
    Markakiou S; Neves AR; Zeidan AA; Gaspar P
    Microbiol Spectr; 2023 Jun; 11(3):e0066823. PubMed ID: 37191512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas-mediated gene editing in lactic acid bacteria.
    Song X; Zhang XY; Xiong ZQ; Liu XX; Xia YJ; Wang SJ; Ai LZ
    Mol Biol Rep; 2020 Oct; 47(10):8133-8144. PubMed ID: 32926267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resident TP712 Prophage of Lactococcus lactis Strain MG1363 Provides Extra Holin Functions to the P335 Phage CAP for Effective Host Lysis.
    Escobedo S; Wegmann U; Pérez de Pipaon M; Campelo AB; Stentz R; Rodríguez A; Martínez B
    Appl Environ Microbiol; 2021 Sep; 87(19):e0109221. PubMed ID: 34260308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic organization of Lactococci.
    Davidson BE; Kordias N; Baseggio N; Lim A; Dobos M; Hillier AJ
    Dev Biol Stand; 1995; 85():411-22. PubMed ID: 8586212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tape Measure Protein Is Involved in the Heat Stability of Lactococcus lactis Phages.
    Geagea H; Labrie SJ; Subirade M; Moineau S
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Employing lytic phage-mediated horizontal gene transfer in Lactococcus lactis.
    Marcelli B; Karsens H; Nijland M; Oudshoorn R; Kuipers OP; Kok J
    PLoS One; 2020; 15(9):e0238988. PubMed ID: 32925946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis.
    Boucher I; Parrot M; Gaudreau H; Champagne CP; Vadeboncoeur C; Moineau S
    Appl Environ Microbiol; 2002 Dec; 68(12):6152-61. PubMed ID: 12450840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic organization of lactic acid bacteria.
    Davidson BE; Kordias N; Dobos M; Hillier AJ
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):161-83. PubMed ID: 8879406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.