These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 36430524)

  • 1. Manipulating GA-Related Genes for Cereal Crop Improvement.
    Cheng J; Hill CB; Shabala S; Li C; Zhou M
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing in cereal crops: an overview.
    Matres JM; Hilscher J; Datta A; Armario-Nájera V; Baysal C; He W; Huang X; Zhu C; Valizadeh-Kamran R; Trijatmiko KR; Capell T; Christou P; Stoger E; Slamet-Loedin IH
    Transgenic Res; 2021 Aug; 30(4):461-498. PubMed ID: 34263445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing.
    Liu L; Lindsay PL; Jackson D
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops.
    Gao S; Chu C
    Plant Cell Physiol; 2020 Dec; 61(11):1902-1911. PubMed ID: 32761079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into gibberellin signaling in regulating plant growth-metabolic coordination.
    Wu K; Xu H; Gao X; Fu X
    Curr Opin Plant Biol; 2021 Oct; 63():102074. PubMed ID: 34217918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing hormone gibberellin knowledge for plant height regulation.
    Wang S; Wang Y
    Plant Cell Rep; 2022 Oct; 41(10):1945-1953. PubMed ID: 35857075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of cereal plant architecture by genome editing to improve yields.
    Huang X; Hilscher J; Stoger E; Christou P; Zhu C
    Plant Cell Rep; 2021 Jun; 40(6):953-978. PubMed ID: 33559722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat.
    Kong X; Wang F; Wang Z; Gao X; Geng S; Deng Z; Zhang S; Fu M; Cui D; Liu S; Che Y; Liao R; Yin L; Zhou P; Wang K; Ye X; Liu D; Fu X; Mao L; Li A
    Plant Biotechnol J; 2023 Oct; 21(10):1990-2001. PubMed ID: 37589238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of Gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement.
    Cheng J; Jia Y; Hill C; He T; Wang K; Guo G; Shabala S; Zhou M; Han Y; Li C
    J Adv Res; 2024 Jan; ():. PubMed ID: 38199453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New semi-dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3-oxidase 1 using CRISPR-Cas9 in barley (Hordeum vulgare L.).
    Cheng J; Hill C; Han Y; He T; Ye X; Shabala S; Guo G; Zhou M; Wang K; Li C
    Plant Biotechnol J; 2023 Apr; 21(4):806-818. PubMed ID: 36587283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic and molecular basis of crop height based on a rice model.
    Liu F; Wang P; Zhang X; Li X; Yan X; Fu D; Wu G
    Planta; 2018 Jan; 247(1):1-26. PubMed ID: 29110072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making the 'Green Revolution' Truly Green: Improving Crop Nitrogen Use Efficiency.
    Wang F; Yoshida H; Matsuoka M
    Plant Cell Physiol; 2021 Sep; 62(6):942-947. PubMed ID: 33836084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops.
    Zhang Y; Shen C; Shi J; Shi J; Zhang D
    J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Improvement of Cereals and Grain Legumes.
    Nawaz MA; Chung G
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33113769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution.
    Liu Q; Wu K; Song W; Zhong N; Wu Y; Fu X
    Annu Rev Plant Biol; 2022 May; 73():523-551. PubMed ID: 35595292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting.
    Cao Y; Zhong Z; Wang H; Shen R
    Plant Biotechnol J; 2022 Mar; 20(3):426-436. PubMed ID: 35075761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photons to food: genetic improvement of cereal crop photosynthesis.
    Furbank RT; Sharwood R; Estavillo GM; Silva-Perez V; Condon AG
    J Exp Bot; 2020 Apr; 71(7):2226-2238. PubMed ID: 32083680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic structural equation modelling provides a whole-system approach for the future crop breeding.
    He T; Angessa TT; Hill CB; Zhang XQ; Chen K; Luo H; Wang Y; Karunarathne SD; Zhou G; Tan C; Wang P; Westcott S; Li C
    Theor Appl Genet; 2021 Sep; 134(9):2875-2889. PubMed ID: 34059938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.