These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 36430524)

  • 41. Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement.
    Mutasa-Gottgens E; Qi A; Mathews A; Thomas S; Phillips A; Hedden P
    Transgenic Res; 2009 Apr; 18(2):301-8. PubMed ID: 18696248
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice.
    Ferrero-Serrano Á; Cantos C; Assmann SM
    Cold Spring Harb Perspect Biol; 2019 Nov; 11(11):. PubMed ID: 31358515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops.
    Furbank RT; Jimenez-Berni JA; George-Jaeggli B; Potgieter AB; Deery DM
    New Phytol; 2019 Sep; 223(4):1714-1727. PubMed ID: 30937909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9 Guided Mutagenesis of
    Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CCT domain-containing genes in cereal crops: flowering time and beyond.
    Liu H; Zhou X; Li Q; Wang L; Xing Y
    Theor Appl Genet; 2020 May; 133(5):1385-1396. PubMed ID: 32006055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Dong S; Dong X; Han X; Zhang F; Zhu Y; Xin X; Wang Y; Hu Y; Yuan D; Wang J; Huang Z; Niu F; Hu Z; Yan P; Cao L; He H; Fu J; Xin Y; Tan Y; Mao B; Zhao B; Yang J; Yuan L; Luo X
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops.
    Kumar J; Kumar A; Sen Gupta D; Kumar S; DePauw RM
    Heredity (Edinb); 2022 Jun; 128(6):473-496. PubMed ID: 35249099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Breeding crops by design for future agriculture.
    Li C
    J Zhejiang Univ Sci B; 2020 Jun; 21(6):423-425. PubMed ID: 32478489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway.
    Shi CL; Dong NQ; Guo T; Ye WW; Shan JX; Lin HX
    Plant J; 2020 Aug; 103(3):1174-1188. PubMed ID: 32365409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice.
    Miao C; Wang Z; Zhang L; Yao J; Hua K; Liu X; Shi H; Zhu JK
    Nat Commun; 2019 Aug; 10(1):3822. PubMed ID: 31444356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice.
    Achary VMM; Reddy MK
    Sci Rep; 2021 Nov; 11(1):21941. PubMed ID: 34753955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current patents and future development underlying marker-assisted breeding in major grain crops.
    Utomo HS; Linscombe SD
    Recent Pat DNA Gene Seq; 2009; 3(1):53-62. PubMed ID: 19149739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.