BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 36430569)

  • 41. Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2-mediated nitric oxide synthase signaling.
    Xia J; Zeng W; Xia Y; Wang B; Xu D; Liu D; Kong MG; Dong Y
    J Biophotonics; 2019 Jan; 12(1):e201800046. PubMed ID: 29931745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway.
    Adhikari M; Kaushik N; Ghimire B; Adhikari B; Baboota S; Al-Khedhairy AA; Wahab R; Lee SJ; Kaushik NK; Choi EH
    Cell Commun Signal; 2019 May; 17(1):52. PubMed ID: 31126298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes.
    Schmidt A; Bekeschus S; Jablonowski H; Barton A; Weltmann KD; Wende K
    Biophys J; 2017 Jun; 112(11):2397-2407. PubMed ID: 28591612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous removal of norfloxacin and chloramphenicol using cold atmospheric plasma jet (CAPJ): Enhanced performance, synergistic effect, plasma-activated water (PAW) contribution, mechanism and toxicity evaluation.
    Fang C; Xu H; Wang S; Shao C; Liu C; Wang H; Huang Q
    J Hazard Mater; 2023 Jun; 452():131306. PubMed ID: 37004443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the permeation of reactive species across nitrated membranes by computer simulations.
    Oliveira MC; Yusupov M; Cordeiro RM; Bogaerts A
    Comput Biol Med; 2021 Sep; 136():104768. PubMed ID: 34426173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways.
    Zhang Q; Zhang H; Zhang Q; Huang Q
    Chemosphere; 2018 Nov; 210():433-439. PubMed ID: 30025360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies.
    Labay C; Hamouda I; Tampieri F; Ginebra MP; Canal C
    Sci Rep; 2019 Nov; 9(1):16160. PubMed ID: 31695110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay between reactive oxygen and nitrogen species in living organisms.
    Lushchak VI; Lushchak O
    Chem Biol Interact; 2021 Nov; 349():109680. PubMed ID: 34606757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species.
    Nicol MJ; Brubaker TR; Honish BJ; Simmons AN; Kazemi A; Geissel MA; Whalen CT; Siedlecki CA; Bilén SG; Knecht SD; Kirimanjeswara GS
    Sci Rep; 2020 Feb; 10(1):3066. PubMed ID: 32080228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions.
    Tarabová B; Lukeš P; Hammer MU; Jablonowski H; von Woedtke T; Reuter S; Machala Z
    Phys Chem Chem Phys; 2019 Apr; 21(17):8883-8896. PubMed ID: 30982833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cold atmospheric nitrogen plasma induces metal-initiated cell death by cell membrane rupture and mitochondrial perturbation.
    Iuchi K; Fukasawa M; Murakami T; Hisatomi H
    Cell Biochem Funct; 2023 Aug; 41(6):687-695. PubMed ID: 37322606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasma-generated reactive oxygen and nitrogen species can lead to closure, locking and constriction of the Dionaea muscipula Ellis trap.
    Volkov AG; Xu KG; Kolobov VI
    J R Soc Interface; 2019 Jan; 16(150):20180713. PubMed ID: 30958146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells.
    Oh JS; Kojima S; Sasaki M; Hatta A; Kumagai S
    Sci Rep; 2017 Feb; 7():41953. PubMed ID: 28176800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cold Atmospheric Plasma Promotes the Immunoreactivity of Granulocytes In Vitro.
    Kupke LS; Arndt S; Lenzer S; Metz S; Unger P; Zimmermann JL; Bosserhoff AK; Gruber M; Karrer S
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34204360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-Wide Comparison of the Target Genes of the Reactive Oxygen Species and Non-Reactive Oxygen Species Constituents of Cold Atmospheric Plasma in Cancer Cells.
    Ji HW; Kim H; Kim HW; Yun SH; Park JE; Choi EH; Kim SJ
    Cancers (Basel); 2020 Sep; 12(9):. PubMed ID: 32947888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting Protective Catalase of Tumor Cells with Cold Atmospheric Plasma- Activated Medium (PAM).
    Bauer G
    Anticancer Agents Med Chem; 2018; 18(6):784-804. PubMed ID: 28762315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic Insight into Permeation of Plasma-Generated Species from Vacuum into Water Bulk.
    Razzokov J; Fazliev S; Kodirov A; AttrI P; Chen Z; Shiratani M
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.
    Ahn HJ; Kim KI; Hoan NN; Kim CH; Moon E; Choi KS; Yang SS; Lee JS
    PLoS One; 2014; 9(1):e86173. PubMed ID: 24465942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment.
    Yan D; Xu W; Yao X; Lin L; Sherman JH; Keidar M
    Sci Rep; 2018 Oct; 8(1):15418. PubMed ID: 30337623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct Sensing of Superoxide and Its Relatives Reactive Oxygen and Nitrogen Species in Phosphate Buffers during Cold Atmospheric Plasmas Exposures.
    Girard-Sahun F; Lefrançois P; Badets V; Arbault S; Clement F
    Anal Chem; 2022 Apr; 94(14):5555-5565. PubMed ID: 35343678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.