These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36430620)

  • 1. Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.
    Veloso SRS; Andrade RGD; Gomes V; Amorim CO; Amaral VS; Salgueiriño V; Coutinho PJG; Ferreira PMT; Correa-Duarte MA; Castanheira EMS
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.
    Andrade RGD; Ferreira D; Veloso SRS; Santos-Pereira C; Castanheira EMS; Côrte-Real M; Rodrigues LR
    Pharmaceutics; 2022 Dec; 14(12):. PubMed ID: 36559189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.
    Ereath Beeran A; Nazeer SS; Fernandez FB; Muvvala KS; Wunderlich W; Anil S; Vellappally S; Ramachandra Rao MS; John A; Jayasree RS; Varma PR
    Phys Chem Chem Phys; 2015 Feb; 17(6):4609-19. PubMed ID: 25586703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia.
    Saldívar-Ramírez MM; Sánchez-Torres CG; Cortés-Hernández DA; Escobedo-Bocardo JC; Almanza-Robles JM; Larson A; Reséndiz-Hernández PJ; Acuña-Gutiérrez IO
    J Mater Sci Mater Med; 2014 Oct; 25(10):2229-36. PubMed ID: 24573458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.
    Darwish MSA; Kim H; Lee H; Ryu C; Lee JY; Yoon J
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31426427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation Incorporation and Synergistic Effects on the Characteristics of Sulfur-Doped Manganese Ferrites S@Mn(Fe
    Nadeem S; Bukhari M; Javed M; Iqbal S; Ahmad MN; Alrbyawi H; Al-Anazy MM; Elkaeed EB; Hegazy HH; Qayyum MA; Pashameah RA; Alzahrani E; Farouk AE
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
    Lin M; Huang J; Sha M
    J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.
    Makridis A; Tziomaki M; Topouridou K; Yavropoulou MP; Yovos JG; Kalogirou O; Samaras T; Angelakeris M
    Int J Hyperthermia; 2016 Nov; 32(7):778-85. PubMed ID: 27442884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction Heating Efficiency of Water-Dispersible Mn
    Ningombam GS; Ningthoujam RS; Kalkura SN; Singh NR
    J Phys Chem B; 2018 Jul; 122(27):6862-6871. PubMed ID: 29957949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance.
    Das A; Mohanty S; Kumar R; Kuanr BK
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42016-42029. PubMed ID: 32799438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia.
    Umut E; Coşkun M; Pineider F; Berti D; Güngüneş H
    J Colloid Interface Sci; 2019 Aug; 550():199-209. PubMed ID: 31075674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
    Melnikov OV; Gorbenko OY; Markelova MN; Kaul AR; Atsarkin VA; Demidov VV; Soto C; Roy EJ; Odintsov BM
    J Biomed Mater Res A; 2009 Dec; 91(4):1048-55. PubMed ID: 19127514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.
    Iacovita C; Florea A; Scorus L; Pall E; Dudric R; Moldovan AI; Stiufiuc R; Tetean R; Lucaciu CM
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications.
    García-Soriano D; Amaro R; Lafuente-Gómez N; Milán-Rois P; Somoza Á; Navío C; Herranz F; Gutiérrez L; Salas G
    J Colloid Interface Sci; 2020 Oct; 578():510-521. PubMed ID: 32540550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating.
    Kaman O; Pollert E; Veverka P; Veverka M; Hadová E; Knízek K; Marysko M; Kaspar P; Klementová M; Grünwaldová V; Vasseur S; Epherre R; Mornet S; Goglio G; Duguet E
    Nanotechnology; 2009 Jul; 20(27):275610. PubMed ID: 19531865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG coating reduces NMR relaxivity of Mn(0.5)Zn(0.5)Gd(0.02)Fe(1.98)O4 hyperthermia nanoparticles.
    Issa B; Qadri S; Obaidat IM; Bowtell RW; Haik Y
    J Magn Reson Imaging; 2011 Nov; 34(5):1192-8. PubMed ID: 21928382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application.
    Thorat ND; Otari SV; Patil RM; Khot VM; Prasad AI; Ningthoujam RS; Pawar SH
    Colloids Surf B Biointerfaces; 2013 Nov; 111():264-9. PubMed ID: 23838191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.